Skip to main content

Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1450))

Abstract

The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide’s N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenschuh H, Volkmer-Engert R, Schmidt M, Schulz M, Schneider-Mergener J, Reineke U (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55(3):188–206

    Article  CAS  PubMed  Google Scholar 

  2. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2(6):1333–1349

    Article  CAS  PubMed  Google Scholar 

  3. Thiele A, Stangl GI, Schutkowski M (2011) Deciphering enzyme function using peptide arrays. Mol Biotechnol 49(3):283–305

    Article  CAS  PubMed  Google Scholar 

  4. Thiele A, Zerweck J, Schutkowski M (2009) Peptide arrays for enzyme profiling. Methods Mol Biol 570:19–65

    Article  CAS  PubMed  Google Scholar 

  5. Erbse A, Schmidt R, Bornemann T, Schneider-Mergener J, Mogk A, Zahn R, Dougan DA, Bukau B (2006) ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439(7077):753–756

    Article  CAS  PubMed  Google Scholar 

  6. Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17(10):1175–1181

    Article  CAS  PubMed  Google Scholar 

  7. Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327(5968):973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim HK, Kim RR, Oh JH, Cho H, Varshavsky A, Hwang CS (2014) The N-terminal methionine of cellular proteins as a degradation signal. Cell 156(1-2):158–169

    Article  CAS  PubMed  Google Scholar 

  9. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179–186

    Article  CAS  PubMed  Google Scholar 

  10. Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A 93(22):12142–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yim YY, Betke K, Hamm H (2015) Using peptide arrays created by the SPOT method for defining protein-protein interactions. Methods Mol Biol 1278:307–320

    Article  CAS  PubMed  Google Scholar 

  12. Winkler DF, Hilpert K, Brandt O, Hancock RE (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. Methods Mol Biol 570:157–174

    Article  CAS  PubMed  Google Scholar 

  13. Bachmair A, Varshavsky A (1989) The degradation signal in a short-lived protein. Cell 56(6):1019–1032

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T, Varshavsky A (1999) Degradation signals in the lysine-asparagine sequence space. EMBO J 18(21):6017–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479(7373):415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479(7373):419–422

    Article  CAS  PubMed  Google Scholar 

  17. Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K, Corbineau F, Holdsworth MJ (2016) Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol J 14:40

    Article  CAS  PubMed  Google Scholar 

  18. Gausepohl H, Behn C (2002) Automated synthesis of solid-phase bound peptides. In: Koch J, Mahler M (eds) Peptide arrays on membrane supports, vol 4, Springer lab manuals. Springer, New York, NY, pp 55–68

    Chapter  Google Scholar 

  19. Ayad NG, Rankin S, Ooi D, Rape M, Kirschner MW (2005) Identification of ubiquitin ligase substrates by in vitro expression cloning. Methods Enzymol 399:404–414

    Article  CAS  PubMed  Google Scholar 

  20. Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT (2009) The substrate recognition domains of the N-end rule pathway. J Biol Chem 284(3):1884–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10(3-4):203–209

    Article  CAS  PubMed  Google Scholar 

  22. Cretich M, Longhi R, Corti A, Damin F, Di Carlo G, Sedini V, Chiari M (2009) Epitope mapping of human chromogranin A by peptide microarrays. Methods Mol Biol 570:221–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christian Behn from INTAVIS for personal advices on the ResPep SL SPOT peptide synthesis and we are grateful to Petra Majovsky and Wolfgang Hoehenwarter for constant support in mass spectrometry and proteome analytics. This work was supported by a grant for setting up the junior research group of the ScienceCampus HallePlant-based Bioeconomy to N.D., a Ph.D. fellowship of the ScienceCampus Halle to M.K. Financial support came from the Leibniz Association, the state of Saxony-Anhalt, the Deutsche Forschungsgemeinschaft (DFG) Graduate Training Center GRK1026 “Conformational Transitions in Macromolecular Interactions” at Halle, and the Leibniz Institute of Plant Biochemistry (IPB) at Halle, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Dissmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Klecker, M., Dissmeyer, N. (2016). Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases. In: Lois, L., Matthiesen, R. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 1450. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3759-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3759-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3757-8

  • Online ISBN: 978-1-4939-3759-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics