Skip to main content

Bioinformatics Tools for Exploring the SUMO Gene Network

  • Protocol
  • First Online:
Book cover Plant Proteostasis

Abstract

Plant sumoylation research has seen significant advances in recent years, particularly since high-throughput proteomics strategies have enabled the discovery of hundreds of potential SUMO targets and interactors of SUMO pathway components. In the present chapter, we introduce the SUMO Gene Network (SGN), a curated assembly of Arabidopsis thaliana genes that have been functionally associated with sumoylation, from SUMO pathway components to targets and interactors. The enclosed tutorial helps interpret and manage these datasets, and details bioinformatics tools that can be used for in silico-based hypothesis generation. The latter include tools for sumoylation site prediction, comparative genomics, and gene network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro PH, Tavares RM, Bejarano ER et al (2012) SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69:3269–3283. doi:10.1007/s00018-012-1094-2

    Article  CAS  PubMed  Google Scholar 

  2. de Lucas M, Provart NJ, Brady SM (2014) Bioinformatic tools in Arabidopsis research. Methods Mol Biol 1062:97–136. doi:10.1007/978-1-62703-580-4_5

    Article  PubMed  Google Scholar 

  3. Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051. doi:10.1105/tpc.109.066050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651. doi:10.1111/j.1365-3040.2009.02040.x

    Article  CAS  PubMed  Google Scholar 

  5. Miura K, Jin JB, Lee J et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414. doi:10.1105/tpc.106.048397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871. doi:10.1038/nrm3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller MJ, Barrett-Wilt GA, Hua Z et al (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci U S A 107:16512–16517. doi:10.1073/pnas.1004181107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller MJ, Scalf M, Rytz TC et al (2013) Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Mol Cell Proteomics 12:449–463. doi:10.1074/mcp.M112.025056M112.025056

    Article  CAS  PubMed  Google Scholar 

  9. Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci U S A 107:17415–17420. doi:10.1073/pnas.1005452107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elrouby N, Bonequi MV, Porri A et al (2013) Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions. Proc Natl Acad Sci U S A 110:19956–19961. doi:10.1073/pnas.1319985110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toufighi K, Brady SM, Austin R et al (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163. doi:10.1111/j.1365-313X.2005.02437.x

    Article  CAS  PubMed  Google Scholar 

  12. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. doi:10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rhee SY, Beavis W, Berardini TZ et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228. doi:10.1093/nar/gkg076

    Article  CAS  PubMed  Google Scholar 

  14. Proost S, Van Bel M, Vaneechoutte D et al (2015) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res 43:D974–D981. doi:10.1093/nar/gku986

    Article  PubMed  Google Scholar 

  15. Proost S, Van Bel M, Sterck L et al (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731. doi:10.1105/tpc.109.071506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi:10.1093/nar/gkr944

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Q, Xie Y, Zheng Y et al (2014) GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res 42:W325–W330. doi:10.1093/nar/gku383gku383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teng S, Luo H, Wang L (2012) Predicting protein sumoylation sites from sequence features. Amino Acids 43:447–455. doi:10.1007/s00726-011-1100-2

    Article  CAS  PubMed  Google Scholar 

  19. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi:10.1093/bioinformatics/btq675

    Article  CAS  PubMed  Google Scholar 

  20. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449. doi:10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  21. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. doi:10.1093/bioinformatics/btp101btp101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by FEDER through the Operational Competitiveness Program—COMPETE—and by national funds through the Foundation for Science and Technology—FCT—within the scope of project “SUMOdulator” [Refs. FCOMP-01-0124-FEDER-028459 and PTDC/BIA-PLA/3850/2012]. PHC was supported by the Fundação para a Ciência e a Tecnologia (FCT) [grant ref. SFRH/BD/44484/2008 and PTDC/BIA-PLA/3850/2012]. HA was supported by the “Genomics and Evolutionary Biology” project, co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herlânder Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Castro, P.H., Santos, M.Â., Magalhães, A.P., Tavares, R.M., Azevedo, H. (2016). Bioinformatics Tools for Exploring the SUMO Gene Network. In: Lois, L., Matthiesen, R. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 1450. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3759-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3759-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3757-8

  • Online ISBN: 978-1-4939-3759-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics