Skip to main content

Detection of Protein–Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway

  • Protocol
  • First Online:
Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1449))

Abstract

The detection of protein–protein interactions by imaging techniques often requires the overexpression of the proteins of interest tagged with fluorescent molecules, which can affect their biological properties and, subsequently, flaw experiment interpretations. The recent development of the proximity ligation assays (PLA) technology allows easy visualization of endogenous protein–protein interactions at the single molecule level. PLA relies on the use of combinations of antibodies coupled to complementary oligonucleotides that are amplified and revealed with a fluorescent probe, each spot representing a single protein–protein interaction. Another application of this technique is the detection of proteins posttranslational modifications to monitor their localization and dynamics in situ. Here, we describe the use of PLA to detect protein SUMOylation, a posttranslational modification related to ubiquitination, as well as interaction of SUMOylated substrates with other proteins, using both adherent and suspension cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  2. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  CAS  PubMed  Google Scholar 

  3. Tempé D, Vives E, Brockly F et al (2014) SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 33:921–927

    Article  PubMed  Google Scholar 

  4. Soderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Meth 3:995–1000

    Article  Google Scholar 

  5. Mahajan R, Delphin C, Guan T et al (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    Article  CAS  PubMed  Google Scholar 

  6. Bossis G, Malnou CE, Farras R et al (2005) Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 25:6964–6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X-D, Goeres J, Zhang H et al (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29:729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matic I, Schimmel J, Hendriks IA et al (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39:641–652

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Dominguez M, Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 1789:451–459

    Article  CAS  PubMed  Google Scholar 

  11. Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536–541

    Article  CAS  PubMed  Google Scholar 

  12. Neyret-Kahn H, Benhamed M, Ye T et al (2013) Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res 23:1563–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paakinaho V, Kaikkonen S, Makkonen H et al (2014) SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res 42(3):1575–1592

    Google Scholar 

  14. Rosonina E, Duncan SM, Manley JL (2010) SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev 24:1242–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MP’s laboratory is an “Equipe Labellisée” of the Ligue Nationale contre le Cancer. This work was also supported by the CNRS, the Association pour la Recherche sur le Cancer (ARC), the INCA (PLBIO 2012-105 and 2013-1-MELA-05-1), the Marie-Curie Initial Training Network “UPStream,” and the Region Languedoc Roussillon (programme “Chercheur d’Avenir”). The authors would like to acknowledge networking support by the Proteostasis COST Action (BM1307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bossis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ristic, M., Brockly, F., Piechaczyk, M., Bossis, G. (2016). Detection of Protein–Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway. In: Matthiesen, R. (eds) Proteostasis. Methods in Molecular Biology, vol 1449. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3756-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3756-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3754-7

  • Online ISBN: 978-1-4939-3756-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics