Skip to main content

Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions

  • Protocol
  • First Online:
Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1448))

Abstract

Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443(3):603–618. doi:10.1042/BJ20120146

    Article  CAS  PubMed  Google Scholar 

  2. Biffi A, Aubourg P, Cartier N (2011) Gene therapy for leukodystrophies. Hum Mol Genet 20(R1):R42–R53. doi:10.1093/hmg/ddr142

    Article  CAS  PubMed  Google Scholar 

  3. Di Nunzio F, Felix T, Arhel NJ et al (2012) HIV-derived vectors for therapy and vaccination against HIV. Vaccine 30(15):2499–2509. doi:10.1016/j.vaccine.2012.01.089

    Article  PubMed  Google Scholar 

  4. Balaggan KS, Ali RR (2012) Ocular gene delivery using lentiviral vectors. Gene Ther 19(2):145–153

    Article  CAS  PubMed  Google Scholar 

  5. Emeagi PU, Goyvaerts C, Maenhout S et al (2013) Lentiviral vectors: a versatile tool to fight cancer. Curr Mol Med 13(4):602–625

    Article  CAS  PubMed  Google Scholar 

  6. Wagemaker G (2014) Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum Gene Ther 25(10):862–865. doi:10.1089/hum.2014.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischer A, Hacein-Bey Abina S, Touzot F et al (2015) Gene therapy for primary immunodeficiencies. Clin Genet 88:507–515. doi:10.1111/cge.12576

    Article  CAS  PubMed  Google Scholar 

  8. Gill S, June CH (2015) Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 263(1):68–89. doi:10.1111/imr.12243

    Article  CAS  PubMed  Google Scholar 

  9. Frecha C, Szecsi J, Cosset FL et al (2008) Strategies for targeting lentiviral vectors. Curr Gene Ther 8(6):449–460

    Article  CAS  PubMed  Google Scholar 

  10. Ansorge S, Henry O, Kamen A (2010) Recent progress in lentiviral vector mass production. Biochem Eng J 48(3):362–377

    Article  CAS  Google Scholar 

  11. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christodoulopoulos I, Cannon PM (2001) Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol 75(9):4129–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horn PA, Topp MS, Morris JC et al (2002) Highly efficient gene transfer into baboon marrow repopulating cells using GALV-pseudotype oncoretroviral vectors produced by human packaging cells. Blood 100(12):3960–3967. doi:10.1182/blood-2002-05-1359

    Article  CAS  PubMed  Google Scholar 

  14. Sandrin V, Boson B, Salmon P et al (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100(3):823–832

    Article  CAS  PubMed  Google Scholar 

  15. Hennig K, Raasch L, Kolbe C et al (2014) HEK293-based production platform for gamma-retroviral (self-inactivating) vectors: application for safe and efficient transfer of COL7A1 cDNA. Hum Gene Ther Clin Dev 25(4):218–228. doi:10.1089/humc.2014.083

    Article  CAS  PubMed  Google Scholar 

  16. Segura MM, Mangion M, Gaillet B et al (2013) New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 13(7):987–1011. doi:10.1517/14712598.2013.779249

    Article  CAS  PubMed  Google Scholar 

  17. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505

    Article  CAS  PubMed  Google Scholar 

  18. Holic N, Seye AK, Majdoul S et al (2014) Influence of mildly acidic pH conditions on the production of lentiviral and retroviral vectors. Hum Gene Ther Clin Dev 25(3):178–185. doi:10.1089/humc.2014.027

    Article  CAS  PubMed  Google Scholar 

  19. Merten OW (2004) State-of-the-art of the production of retroviral vectors. J Gene Med 6(Suppl 1):S105–S124

    Article  CAS  PubMed  Google Scholar 

  20. Merten OW, Charrier S, Laroudie N et al (2011) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther 22(3):343–356

    Article  CAS  PubMed  Google Scholar 

  21. Fenard D, Ingrao D, Seye A et al (2013) Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells. Mol Ther Nucleic Acids 2:e90. doi:10.1038/mtna.2013.17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Association Française contre les Myopathies (AFM). We thank Anne Galy for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalie Holic Ph.D. or David Fenard Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Holic, N., Fenard, D. (2016). Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions. In: Federico, M. (eds) Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools. Methods in Molecular Biology, vol 1448. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3753-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3753-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3751-6

  • Online ISBN: 978-1-4939-3753-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics