Skip to main content

Conditional RNAi Using the Lentiviral GLTR System

  • Protocol
  • First Online:
Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1448))

Abstract

RNA interference (RNAi) has become an essential technology for functional gene analysis. Its success depends on the effective expression of target gene-specific RNAi-inducing small double-stranded interfering RNA molecules (siRNAs). Here, were describe the use of a recently developed lentiviral RNAi system that allows the rapid generation of stable cell lines with inducible RNAi based on conditional expression of double-stranded short hairpin RNA (shRNA). These lentiviral vectors can be generated rapidly using the GATEWAY recombination cloning technology. Conditional cell lines can be established by using either a two-vector system in which the regulator is encoded by a separate vector or by a one-vector system. The available different lentiviral vectors for conditional shRNA expression cassette delivery co-express additional genes that allow (1) the use of fluorescent proteins for color-coded combinatorial RNAi or monitoring RNAi induction (pGLTR-FP), (2) selection of transduced cells (pGLTR-S), and (3) the generation of conditional cell lines using a one-vector system (pGLTR-X).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  5. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M, Lai DY, Barbosa IA, Kwon JS, Guan Y et al (2013) An optimized microRNA backbone for effective single-copy RNAi. Cell Rep 5:1704–1713

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  8. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline- responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deuschle U, Meyer WK, Thiesen HJ (1995) Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 15:1907–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N, Bucher P, Trono D (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6:e1000869

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sigl R, Ploner C, Shivalingaiah G, Kofler R, Geley S (2014) Development of a multipurpose GATEWAY-based lentiviral tetracycline-regulated conditional RNAi system (GLTR). PLoS One 9:e97764

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443:603–618

    Article  CAS  PubMed  Google Scholar 

  13. Bartz SR, Vodicka MA (1997) Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods 12:337–342

    Article  CAS  PubMed  Google Scholar 

  14. Donnelly ML, Hughes LE, Luke G, Mendoza H, ten DE, Gani D, Ryan MD (2001) The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 82:1027–1041

    Article  CAS  PubMed  Google Scholar 

  15. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pei Y, Tuschl T (2006) On the art of identifying effective and specific siRNAs. Nat Methods 3:670–676

    Article  CAS  PubMed  Google Scholar 

  17. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M (2003) Continuous high-titer HIV-1 vector production. Nat Biotechnol 21:569–572

    Article  CAS  PubMed  Google Scholar 

  18. Swift S, Lorens J, Achacoso P, Nolan GP (2001) Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr Protoc Immunol. Chapter 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Geley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pfeiffenberger, E., Sigl, R., Geley, S. (2016). Conditional RNAi Using the Lentiviral GLTR System. In: Federico, M. (eds) Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools. Methods in Molecular Biology, vol 1448. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3753-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3753-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3751-6

  • Online ISBN: 978-1-4939-3753-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics