Skip to main content

Detection and Identification of Ligands for Mammalian RPTP Extracellular Domains

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1447))

Abstract

Receptor protein tyrosine phosphatases (RPTPs) form a group of over 20 enzymes in vertebrates, each with unique ectodomains subject to potential extracellular interactions with ligands. It has recently become clear that a remarkably diverse range of ligands exist, including homophilic binders, adhesion molecules, neurotrophin receptors, and proteoglycans. Individual RPTPs can bind several ligands, and vice versa, suggesting that complex cell signaling networks exist. The identification of RPTP ligands and where they are located in tissues remains a challenge for a large number of these enzymes. Here we describe some powerful methods that have proved successful for several research groups, leading to our improved understanding of RPTP-ligand interactions and functional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charbonneau H, Tonks NK, Walsh KA, Fischer EH (1988) The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A 85(19):7182–7186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charbonneau H, Tonks NK, Kumar S, Diltz CD, Harrylock M, Cool DE, Krebs EG, Fischer EH, Walsh KA (1989) Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci U S A 86:5252–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA (1988) Demonstration that the leukocyte common antigen is a protein tyrosine phosphatase. Biochemistry 27(24):8695–8701

    Article  CAS  PubMed  Google Scholar 

  4. Mohebiany AN, Nikolaienko RM, Bouyain S, Harroch S (2013) Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J 280(2):388–400

    Article  CAS  PubMed  Google Scholar 

  5. Lisabeth EM, Falivelli G, Pasquale EB (2013) Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 5(9)

    Google Scholar 

  6. Brady-Kalnay SM, Flint AJ, Tonks NK (1993) Homophilic binding of PTPm, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 122:961–972

    Article  CAS  PubMed  Google Scholar 

  7. Brady Kalnay SM, Rimm DL, Tonks NK (1995) Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol 130(4):977–986

    Article  CAS  PubMed  Google Scholar 

  8. Aricescu AR, Hon W-C, Siebold C, Lu W, van der Merwe PA, Jones EY (2006) Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhesion. EMBO J 25(4):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alete DE, Weeks ME, Hovanession AG, Hawadle M, Stoker AW (2006) Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-sigma. FEBS J 273:4668–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD et al (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82(2):251–260

    Article  CAS  PubMed  Google Scholar 

  11. Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin- binding growth-associated molecule (HB-GAM). J Biol Chem 271(35):21446–21452

    Article  CAS  PubMed  Google Scholar 

  12. Bouyain S, Watkins DJ (2010) The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A 107(6):2443–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwon SK, Woo J, Kim SY, Kim H, Kim E (2010) Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem 285(18):13966–13978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM (2011) Postsynaptic TrkC and Presynaptic PTPσ Function as a Bidirectional Excitatory Synaptic Organizing Complex. Neuron 69(2):287–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yim YS, Kwon Y, Nam J, Yoon HI, Lee K, Kim DG, Kim E, Kim CH, Ko J (2013) Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci U S A 110(10):4057–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi H, Katayama K, Sohya K, Miyamoto H, Prasad T, Matsumoto Y, Ota M, Yasuda H, Tsumoto T, Aruga J, Craig AM (2012) Selective control of inhibitory synapse development by Slitrk3-PTPdelta trans-synaptic interaction. Nat Neurosci 15(3):389–398, S381-382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi H, Craig AM (2013) Protein tyrosine phosphatases PTPdelta, PTPsigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 36(9):522–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coles CH, Mitakidis N, Zhang P, Elegheert J, Lu W, Stoker AW, Nakagawa T, Craig AM, Jones EY, Aricescu AR (2014) Structural basis for extracellular cis and trans RPTPsigma signal competition in synaptogenesis. Nat Commun 5:5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR (2011) Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science 332(6028):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 97(6):2603–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stoker A (2005) Methods for identifying extracellular ligands of RPTPs. Methods 35(1):80–89

    Article  CAS  PubMed  Google Scholar 

  22. Cheng HJ, Flanagan JG (2001) Cloning and characterization of RTK ligands using receptor-alkaline phosphatase fusion proteins. Methods Mol Biol 124:313–334

    CAS  PubMed  Google Scholar 

  23. Haj F, McKinnell I, Stoker A (1999) Retinotectal ligands for the receptor tyrosine phosphatase CRYPalpha. Mol Cell Neurosci 14(3):225–240

    Article  CAS  PubMed  Google Scholar 

  24. Aricescu AR, McKinnell IW, Halfter W, Stoker AW (2002) Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol 22(6):1881–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flanagan JG, Cheng HJ (2000) Alkaline phosphatase fusion proteins for molecular characterization and cloning of receptors and their ligands. Methods Enzymol 327:198–210

    Article  CAS  PubMed  Google Scholar 

  26. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250

    Article  PubMed  Google Scholar 

  27. Cullen BR, Malim MH (1992) Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods Enzymol 216:362–368

    Article  CAS  PubMed  Google Scholar 

  28. Sajnani-Perez G, Chilton JK, Aricescu AR, Haj F, Stoker AW (2003) Isoform-specific binding of the tyrosine phosphatase PTPsigma to a ligand in developing muscle. Mol Cell Neurosci 22(1):37–48

    Article  CAS  PubMed  Google Scholar 

  29. Cheng HJ, Flanagan JG (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79(1):157–168

    Article  CAS  PubMed  Google Scholar 

  30. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415

    Article  CAS  PubMed  Google Scholar 

  31. Lee S, Faux C, Nixon J, Alete D, Chilton J, Hawadle M, Stoker AW (2007) Dimerization of protein tyrosine phosphatase sigma governs both ligand binding and isoform specificity. Mol Cell Biol 27(5):1795–1808

    Article  CAS  PubMed  Google Scholar 

  32. Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23(3):345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work addressing RPTP ligands over the past 15 years has been generously funded by the European Commission (HPRN-CT-2000-00085), the Wellcome Trust (Studentship for John Chilton and grant 071418), the Karim Rida Said Foundation (Studentship for F. Haj), University College London Graduate Research Scholarship (Alexandru Aricescu), and the Child Health Research Appeal Trust. We thank Radu Aricescu for helpful advice and we acknowledge Charlotte Coles for the generation of the TrkC-CFP vector used in Fig. 2d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew William Stoker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stoker, A.W. (2016). Detection and Identification of Ligands for Mammalian RPTP Extracellular Domains. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics