Skip to main content

Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1447))

Abstract

Phosphorylation of proteins on tyrosine residues is the consequence of coordinated action of tyrosine kinases (TKs), and protein tyrosine phosphatases (PTPs). Together, they regulate intermolecular interactions, subcellular localization, and activity of a variety of proteins. The level of total protein-associated tyrosine phosphorylation in eukaryotic cells is only a small fraction of the total phosphorylation. PTPs, which have high specific activity compared to tyrosine kinases, play an important role in maintaining the tyrosine phosphorylation state of proteins and regulate signal transduction pathways and cellular responses. PTPs depend on specific invariant residues that enable binding to substrates phosphorylated at tyrosine and aid catalytic activity. Identification of PTP substrates has helped understand their role in distinct intracellular signaling pathways. Because of their high specific activity, the interaction between tyrosine phosphatases and their substrates is often very transient in the cellular context, and therefore identification of physiological substrates has been difficult. Single-site mutations in the enzymes stabilize interaction between the enzyme and its targets and have been used extensively to identify substrates. The mutations are either of the catalytic cysteine (Cys) residue or other invariant residues and have been classified as substrate-trapping mutants (STMs). These mutants often serve as dominant negatives that can inactivate effector functions of a specific PTP within cells. Considering their association with human disorders, inhibiting specific PTPs is important therapeutically. Since the catalytic domains are largely conserved, developing small-molecule inhibitors to a particular enzyme has proven difficult and therefore alternate strategies to block functions of individual enzymes are seriously being investigated. We provide a description of methods that will be useful to design strategies of using dominant-negative and substrate-trapping mutants for identifying novel interacting partners and substrates of PTPs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fauman EB, Saper MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21(11):413–417

    Article  CAS  PubMed  Google Scholar 

  2. Tiganis T, Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  CAS  PubMed  Google Scholar 

  4. Tonks NK (2013) Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J 280(2):346–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mustelin T, Tasken K (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371(Pt 1):15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swarup G, Radha V (1992) Protein tyrosine phosphatases as regulators of proten kinase activity. Curr Sci 62:462–469

    CAS  Google Scholar 

  7. Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331(1):1–14

    Article  CAS  PubMed  Google Scholar 

  8. Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D (2014) Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Biochemistry 53(2):397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garton AJ, Burnham MR, Bouton AH, Tonks NK (1997) Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15(8):877–885

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZY, Wang Y, Dixon JE (1994) Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci U S A 91(5):1624–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jia Z, Barford D, Flint AJ, Tonks NK (1995) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268(5218):1754–1758

    Article  CAS  PubMed  Google Scholar 

  12. Tian W, Qu L, Meng L, Liu C, Wu J, Shou C (2012) Phosphatase of regenerating liver-3 directly interacts with integrin beta1 and regulates its phosphorylation at tyrosine 783. BMC Biochem 13:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mercan F, Bennett AM (2010) Analysis of protein tyrosine phosphatases and substrates. Curr Protoc Mol Biol. Chapter 18:Unit 18. 16

    Google Scholar 

  14. Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T (2011) A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B) reveals full autoactivation of the insulin receptor precursor. J Biol Chem 286(22):19373–19380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agazie YM, Hayman MJ (2003) Development of an efficient “substrate-trapping” mutant of Src homology phosphotyrosine phosphatase 2 and identification of the epidermal growth factor receptor, Gab1, and three other proteins as target substrates. J Biol Chem 278(16):13952–13958

    Article  CAS  PubMed  Google Scholar 

  16. Flint AJ, Tiganis T, Barford D, Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 94(5):1680–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blanchetot C, Chagnon M, Dube N, Halle M, Tremblay ML (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35(1):44–53

    Article  CAS  PubMed  Google Scholar 

  18. Xie L, Zhang YL, Zhang ZY (2002) Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry 41(12):4032–4039

    Article  CAS  PubMed  Google Scholar 

  19. Zhang SH, Liu J, Kobayashi R, Tonks NK (1999) Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem 274(25):17806–17812

    Article  CAS  PubMed  Google Scholar 

  20. Merritt R, Hayman MJ, Agazie YM (2006) Mutation of Thr466 in SHP2 abolishes its phosphatase activity, but provides a new substrate-trapping mutant. Biochim Biophys Acta 1763(1):45–56

    Article  CAS  PubMed  Google Scholar 

  21. Qiu W, Wang X, Romanov V, Hutchinson A, Lin A, Ruzanov M, Battaile KP, Pai EF, Neel BG, Chirgadze NY (2014) Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC Struct Biol 14:10

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scapin G, Patel S, Patel V, Kennedy B, Asante-Appiah E (2001) The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S→O change. Protein Sci 10(8):1596–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berchtold S, Volarevic S, Moriggl R, Mercep M, Groner B (1998) Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol Endocrinol 12(4):556–567

    Article  CAS  PubMed  Google Scholar 

  24. Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, Rohrschneider LR, Neel BG (1998) Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol 18(7):3838–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cong F, Spencer S, Cote JF, Wu Y, Tremblay ML, Lasky LA, Goff SP (2000) Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol Cell 6(6):1413–1423

    Article  CAS  PubMed  Google Scholar 

  26. LaMontagne KR Jr, Hannon G, Tonks NK (1998) Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc Natl Acad Sci U S A 95(24):14094–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang Y, Ceacareanu B, Zhuang D, Zhang C, Pu Q, Ceacareanu AC, Hassid A (2006) Counter-regulatory function of protein tyrosine phosphatase 1B in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation. Arterioscler Thromb Vasc Biol 26(3):501–507

    Article  CAS  PubMed  Google Scholar 

  28. Chang HH, Tai TS, Lu B, Iannaccone C, Cernadas M, Weinblatt M, Shadick N, Miaw SC, Ho IC (2012) PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. PLoS One 7(3), e33067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kharitidi D, Manteghi S, Pause A (2014) Pseudophosphatases: methods of analysis and physiological functions. Methods 65(2):207–218

    Article  CAS  PubMed  Google Scholar 

  30. Zhang YL, Yao ZJ, Sarmiento M, Wu L, Burke TR Jr, Zhang ZY (2000) Thermodynamic study of ligand binding to protein-tyrosine phosphatase 1B and its substrate-trapping mutants. J Biol Chem 275(44):34205–34212

    Article  CAS  PubMed  Google Scholar 

  31. Mitra A, Sasikumar K, Parthasaradhi BV, Radha V (2013) The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR-Abl but not cellular Abl. Biochim Biophys Acta 1832(1):275–284

    Article  CAS  PubMed  Google Scholar 

  32. Ren Y, Meng S, Mei L, Zhao ZJ, Jove R, Wu J (2004) Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J Biol Chem 279(9):8497–8505

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, Jeffery D, Mortara K, Sampang J, Williams SR et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281(16):11002–11010

    Article  CAS  PubMed  Google Scholar 

  34. Fukada M, Kawachi H, Fujikawa A, Noda M (2005) Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: Isolation of substrates for protein tyrosine phosphatase receptor type z. Methods 35(1):54–63

    Article  CAS  PubMed  Google Scholar 

  35. Tautz L, Critton DA, Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 1053:179–221

    Article  CAS  PubMed  Google Scholar 

  36. Swarup G, Speeg KV Jr, Cohen S, Garbers DL (1982) Phosphotyrosyl-protein phosphatase of TCRC-2 cells. J Biol Chem 257(13):7298–7301

    CAS  PubMed  Google Scholar 

  37. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851

    Article  CAS  PubMed  Google Scholar 

  38. Pasquali C, Vilbois F, Curchod ML (2000) Hooft van Huijsduijnen R, and Arigoni F. Mapping and identification of protein-protein interactions by two-dimensional far-Western immunoblotting. Electrophoresis 21(16):3357–3368

    Article  CAS  PubMed  Google Scholar 

  39. Mitra A, Kalayarasan S, Gupta V, Radha V (2011) TC-PTP dephosphorylates the guanine nucleotide exchange factor C3G (RapGEF1) and negatively regulates differentiation of human neuroblastoma cells. PLoS One 6(8), e23681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang YC, Lin SY, Liang SY, Pan KT, Chou CC, Chen CH, Liao CL, Khoo KH, Meng TC (2008) Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res 7(3):1055–1066

    Article  CAS  PubMed  Google Scholar 

  41. Liang F, Kumar S, Zhang ZY (2007) Proteomic approaches to studying protein tyrosine phosphatases. Mol Biosyst 3(5):308–316

    Article  CAS  PubMed  Google Scholar 

  42. Kawachi H, Fujikawa A, Maeda N, Noda M (2001) Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase zeta /beta by the yeast substrate-trapping system. Proc Natl Acad Sci U S A 98(12):6593–6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang ZY, Thieme-Sefler AM, Maclean D, McNamara DJ, Dobrusin EM, Sawyer TK, Dixon JE (1993) Substrate specificity of the protein tyrosine phosphatases. Proc Natl Acad Sci U S A 90(10):4446–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pellegrini MC, Liang H, Mandiyan S, Wang K, Yuryev A, Vlattas I, Sytwu T, Li YC, Wennogle LP (1998) Mapping the subsite preferences of protein tyrosine phosphatase PTP-1B using combinatorial chemistry approaches. Biochemistry 37(45):15598–15606

    Article  CAS  PubMed  Google Scholar 

  45. Vetter SW, Keng YF, Lawrence DS, Zhang ZY (2000) Assessment of protein-tyrosine phosphatase 1B substrate specificity using “inverse alanine scanning”. J Biol Chem 275(4):2265–2268

    Article  CAS  PubMed  Google Scholar 

  46. Muppirala M, Gupta V, Swarup G (2012) Tyrosine phosphorylation of a SNARE protein, syntaxin 17: implications for membrane trafficking in the early secretory pathway. Biochim Biophys Acta 1823(12):2109–2119

    Article  CAS  PubMed  Google Scholar 

  47. Boute N, Boubekeur S, Lacasa D, Issad T (2003) Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep 4(3):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Palka HL, Park M, Tonks NK (2003) Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem 278(8):5728–5735

    Article  CAS  PubMed  Google Scholar 

  49. Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S (2010) CBB staining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis 31(4):593–598

    Article  CAS  PubMed  Google Scholar 

  50. He R, Zeng LF, He Y, Zhang S, Zhang ZY (2013) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 280(2):731–750

    Article  CAS  PubMed  Google Scholar 

  51. Zhang ZY (2005) Functional studies of protein tyrosine phosphatases with chemical approaches. Biochim Biophys Acta 1754(1-2):100–107

    Article  CAS  PubMed  Google Scholar 

  52. Cote JF, Charest A, Wagner J, Tremblay ML (1998) Combination of gene targeting and substrate trapping to identify substrates of protein tyrosine phosphatases using PTP-PEST as a model. Biochemistry 37(38):13128–13137

    Article  CAS  PubMed  Google Scholar 

  53. Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 7(9):1763–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walchli S, Curchod ML, Gobert RP, Arkinstall S (2000) and Hooft van Huijsduijnen R. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on “substrate-trapping” mutants. J Biol Chem 275(13):9792–9796

    Article  CAS  PubMed  Google Scholar 

  55. Tonks NK (2009) Pseudophosphatases: grab and hold on. Cell 139(3):464–465

    Article  CAS  PubMed  Google Scholar 

  56. He RJ, Yu ZH, Zhang RY, Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10):1227–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bergeron S, Dubois MJ, Bellmann K, Schwab M, Larochelle N, Nalbantoglu J, Marette A (2011) Inhibition of the protein tyrosine phosphatase SHP-1 increases glucose uptake in skeletal muscle cells by augmenting insulin receptor signaling and GLUT4 expression. Endocrinology 152(12):4581–4588

    Article  CAS  PubMed  Google Scholar 

  58. Song DD, Chen Y, Li ZY, Guan YF, Zou DJ, Miao CY (2013) Protein tyrosine phosphatase 1B inhibits adipocyte differentiation and mediates TNFalpha action in obesity. Biochim Biophys Acta 1831(8):1368–1376

    Article  CAS  PubMed  Google Scholar 

  59. Xu D, Zheng H, Yu WM, Qu CK (2013) Activating mutations in protein tyrosine phosphatase Ptpn11 (Shp2) enhance reactive oxygen species production that contributes to myeloproliferative disorder. PLoS One 8(5), e63152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 64(1):65–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in VR’s lab is supported by grants from DST (SR/SO/BB-0087/2012), DBT (BT/PR11921/BRB/10/698/2009), and CSIR (BSC 0108, BSC 0115, and BSC 0111). I thank Dr. Ghanshyam Swarup and Dr. E. Prem Kumar Reddy for gift of plasmids used in experiments mentioned in this chapter, and Dr. Kunal Dayma for assistance in preparing the manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vegesna Radha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Radha, V. (2016). Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics