Skip to main content

In Situ Proximity Ligation Assay (In Situ PLA) to Assess PTP-Protein Interactions

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Abstract

Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  PubMed  Google Scholar 

  2. Östman A, Böhmer FD (2001) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11:258–266

    Article  PubMed  Google Scholar 

  3. Böhmer FD, Friedrich K (2014) Protein tyrosine phosphatases as wardens of STAT signaling. JAKSTAT 3:e28087

    PubMed  PubMed Central  Google Scholar 

  4. Östman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320

    Article  PubMed  Google Scholar 

  5. Julien SG, Dube N, Hardy S, Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11:35–49

    Article  CAS  PubMed  Google Scholar 

  6. Flint AJ, Tiganis T, Barford D, Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 94:1680–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tiganis T, Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML (2010) Receptor tyrosine phosphatase sigma (RPTPsigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell Signal 22:1626–1633

    Article  CAS  PubMed  Google Scholar 

  9. Bugga L, Ratnaparkhi A, Zinn K (2009) The cell surface receptor Tartan is a potential in vivo substrate for the receptor tyrosine phosphatase Ptp52F. Mol Cell Biol 29:3390–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakuraba J, Shintani T, Tani S, Noda M (2013) Substrate specificity of R3 receptor-like protein-tyrosine phosphatase subfamily toward receptor protein-tyrosine kinases. J Biol Chem 288:23421–23431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–1711

    Article  CAS  PubMed  Google Scholar 

  12. Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T (2011) A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B) reveals full autoactivation of the insulin receptor precursor. J Biol Chem 286:19373–19380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biskup C, Böhmer A, Pusch R, Kelbauskas L, Gorshokov A, Majoul I, Lindenau J, Benndorf K, Böhmer FD (2004) Visualization of SHP-1-target interaction. J Cell Sci 117:5165–5178

    Article  CAS  PubMed  Google Scholar 

  14. Boute N, Boubekeur S, Lacasa D, Issad T (2003) Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep 4:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Monteleone MC, Gonzalez Wusener AE, Burdisso JE, Conde C, Caceres A, Arregui CO (2012) ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 7:e38948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI (2012) Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One 7:e36633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roda-Navarro P, Bastiaens PI (2014) Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One 9:e103203

    Article  PubMed  PubMed Central  Google Scholar 

  18. Söderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  19. Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wahlby C, Gullberg M, Botling J, Sjöblom T, Markova B, Östman A, Landegren U, Söderberg O (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6:1500–1509

    Article  CAS  PubMed  Google Scholar 

  20. Petri MK, Koch P, Stenzinger A, Kuchelmeister K, Nestler U, Paradowska A, Steger K, Brobeil A, Viard M, Wimmer M (2011) PTPIP51, a positive modulator of the MAPK/Erk pathway, is upregulated in glioblastoma and interacts with 14-3-3beta and PTP1B in situ. Histol Histopathol 26:1531–1543

    CAS  PubMed  Google Scholar 

  21. Mistafa O, Ghalali A, Kadekar S, Hogberg J, Stenius U (2010) Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem 285:27900–27910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeon M, Zinn K (2015) R3 receptor tyrosine phosphatases: conserved regulators of receptor tyrosine kinase signaling and tubular organ development. Semin Cell Dev Biol 37:119–126

    Article  CAS  PubMed  Google Scholar 

  23. Böhmer SA, Weibrecht I, Söderberg O, Böhmer FD (2013) Association of the protein-tyrosine phosphatase DEP-1 with its substrate FLT3 visualized by in situ proximity ligation assay. PLoS One 8:e62871

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, Westholm JO, Larsson E, Lindahl P, Cross MJ, Claesson-Welsh L (2009) Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J 23:1490–1502

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi M, Majumdar A, Li X, Adler J, Sun Z, Vertuani S, Hellberg C, Mellberg S, Koch S, Dimberg A, Koh GY, Dejana E, Belting HG, Affolter M, Thurston G, Holmgren L, Vestweber D, Claesson-Welsh L (2013) VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun 4:1672

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koos B, Andersson L, Clausson CM, Grannas K, Klaesson A, Cane G, Söderberg O (2014) Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 377:111–126

    CAS  PubMed  Google Scholar 

  27. Gu GJ, Friedman M, Jost C, Johnsson K, Kamali-Moghaddam M, Pluckthun A, Landegren U, Söderberg O (2013) Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation. N Biotechnol 30:144–152

    Article  CAS  PubMed  Google Scholar 

  28. Clausson CM, Allalou A, Weibrecht I, Mahmoudi S, Farnebo M, Landegren U, Wählby C, Söderberg O (2011) Increasing the dynamic range of in situ PLA. Nat Methods 8:892–893

    Article  CAS  PubMed  Google Scholar 

  29. Clausson CM, Arngården L, Ishaq O, Axel Klaesson A, Kühnemund M, Grannas K, Koos B, Qian X, Ranefall P, Krzywkowski T, Brismar H, Nilsson M, Wählby C, Söderberg O (2015) Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio. Sci Rep 5:12317

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leuchowius KJ, Clausson CM, Grannas K, Erbilgin Y, Botling J, Zieba A, Landegren U, Söderberg O (2013) Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol Cell Proteomics 12:1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gross S, Knebel A, Tenev T, Neininger A, Gaestel M, Herrlich P, Böhmer FD (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274:26378–26386

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt-Arras DE, Böhmer A, Markova B, Choudhary C, Serve H, Böhmer FD (2005) Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol 25:3690–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho CH, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim KT, Kim I, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY (2004) COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci U S A 101:5547–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF, Vestweber D (2009) VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol 185:657–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arora D, Stopp S, Böhmer SA, Schons J, Godfrey R, Masson K, Razumovskaya E, Rönnstrand L, Tänzer S, Bauer R, Böhmer FD, Müller JP (2011) Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem 286:10918–10929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leuchowius KJ, Jarvius M, Wickstrom M, Rickardson L, Landegren U, Larsson R, Söderberg O, Fryknas M, Jarvius J (2010) High content screening for inhibitors of protein interactions and post-translational modifications in primary cells by proximity ligation. Mol Cell Proteomics 9:178–183

    Article  CAS  PubMed  Google Scholar 

  38. Allalou A, Wählby C (2009) BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Methods Programs Biomed 94:58–65

    Article  CAS  PubMed  Google Scholar 

  39. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wahlby C, Nilsson M (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10:857–860

    Article  CAS  PubMed  Google Scholar 

  41. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10:527–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from Deutsche Forschungsgemeinschaft and Deutsche Krebshilfe (to F.D.B.), the Community’s 7th Framework Program (FP7/2007–2013) under grant agreement no 278568 “PRIMES” and the Swedish Research Council (to O.S.), the Knut and Alice Wallenberg foundation (Wallenberg Scholar Award), the Swedish Science Council, and the Swedish Cancer Foundation (to L.C-.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-D. Böhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koch, S. et al. (2016). In Situ Proximity Ligation Assay (In Situ PLA) to Assess PTP-Protein Interactions. In: Pulido, R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 1447. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3746-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3746-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3744-8

  • Online ISBN: 978-1-4939-3746-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics