Skip to main content

Why Robots Entered Neurosurgery

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 116))

Abstract

Progress in neurosurgery has paralleled technological innovation. Image-guided surgical robotic systems have emerged as a potential hub for integration of the complex sensory, pathologic, and imaging data sets that are available to contemporary neurosurgeons. These systems couple the executive capacity of surgeons with the technical capabilities of machines and have the potential to improve surgical care as neurosurgery progresses towards the cellular level. Surgery is often performed in animal models prior to clinical application, representing a very important safety step in regulatory approval. As the capital investment for surgical robotic systems decreases, robotic systems may be specifically designed for animal application. In this chapter, we review neurosurgical robotic systems used in humans and animals; present the development, preclinical testing, and early clinical use of a unique image guided MR-compatible neurosurgical robot called neuroArm; and review the strengths and limitations of using surgical robotic systems in animal models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cushing H, Bovie WT (1928) Electrosurgery as an aid to the removal of intracranial tumors, with a preliminary note on a new surgical-current generator by W.T. Bovie. Surg Gynecol Obstet 27:751–785

    Google Scholar 

  2. Kriss TC, Kriss VM (1998) History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery 42(4):899–907

    Article  CAS  PubMed  Google Scholar 

  3. Yasargil MG (1969) Microsurgery applied to neurosurgery. Academic, New York

    Google Scholar 

  4. Broca P (1861) Nouvelle observation d’aphe´mie produite par une le´sion de la troisie`me circonvolution frontale. Bulletins de la Socie´te´ d’anatomie 2e serie 6:398–407

    Google Scholar 

  5. Roentgen WC (1895) On a new kind of rays. Proc Phys-Med Soc, Wurzburg

    Google Scholar 

  6. Dandy WE (1919) Roentgenography of the brain after injection of air into the spinal canal. Ann Surg 70:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol 46:1016

    Article  CAS  PubMed  Google Scholar 

  8. Lauterbur PC (1980) Progress in n.m.r. zeugmatogrpahy imaging. Philos Trans R Soc Lond B Biol Sci 289(1037):483–487

    Article  CAS  PubMed  Google Scholar 

  9. Mansfield P, Maudsley AA (1977) Medical imaging by NMR. Br J Radiol 50:188–194

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa S, Tso-Ming L, Nayak AS et al (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  PubMed  Google Scholar 

  11. Peeling J, Sutherland GR (1992) High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn Reson Med 24:123–136

    Article  CAS  PubMed  Google Scholar 

  12. Lacy AM, Garcia-Valdecasas JC, Delgado S et al (2002) Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomized trial. Lancet 359(9325):2224–2229

    Article  PubMed  Google Scholar 

  13. Liem MS, van der Graaf Y, van Steensel CJ et al (1997) Comparison of conventional anterior surgery and laparoscopic surgery for inguinal-hernia repair. N Engl J Med 336(22):1541–1547

    Article  CAS  PubMed  Google Scholar 

  14. Kelly PJ, Kall B, Goerss S (1983) Stereotactic CT scanning for the biopsy of intracranial lesions and functional neurosurgery. Appl Neurophysiol 46:193–199

    CAS  PubMed  Google Scholar 

  15. Kanner AA, Vogelbaum MA, Mayberg MR et al (2002) Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg 97:1115–1124

    Article  PubMed  Google Scholar 

  16. Chandler WF, Knake JE, McGillicuddy JE et al (1982) Intraoperative use of real-time ultrasonography in neurosurgery. J Neurosurg 57(2):157–163

    Article  CAS  PubMed  Google Scholar 

  17. Lunsford LD (1982) A dedicated CT system for the stereotactic operating room. Appl Neurophysiol 45(4–5):374–378

    CAS  PubMed  Google Scholar 

  18. Black PM, Moriarty T, Alexander E III et al (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–835

    Article  CAS  PubMed  Google Scholar 

  19. Sutherland GR, Kaibara T, Louw D et al (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91(5):804–813

    Article  CAS  PubMed  Google Scholar 

  20. Lang MJ, Sutherland GR (2010) Informatic surgery: the union of surgeon and machine. World Neurosurg 74(1):118–120

    Article  PubMed  Google Scholar 

  21. Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160

    Article  CAS  PubMed  Google Scholar 

  22. Benabid AL, Cinquin P, Lavaile S et al (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging: technological design and preliminary results. Appl Neurophysiol 50(1–6):153–154

    CAS  PubMed  Google Scholar 

  23. Drake JM, Joy M, Goldenberg A et al (1991) Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1):27–33

    Article  CAS  PubMed  Google Scholar 

  24. Fankhauser H, Glauser D, Flury P et al (1994) Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg 63(1–4):93–98

    CAS  PubMed  Google Scholar 

  25. Le Roux PD, Das H, Esquenazi S et al (2001) Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48(3):584–589

    Article  PubMed  Google Scholar 

  26. Taylor R, Jensen P, Whitcomb L et al (1999) A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 18(12):1201–1210

    Article  Google Scholar 

  27. Chinzei K, Miller K (2001) Towards MRI guided surgical manipulator. Med Sci Monit 7(1):153–163

    CAS  PubMed  Google Scholar 

  28. Hongo K, Kobayashi S, Kakizawa Y et al (2002) NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery 51(4):985–988

    PubMed  Google Scholar 

  29. Zimmermann M, Krishnan R, Raabe A et al (2004) Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir (Wien) 146(7):697–704

    Article  CAS  Google Scholar 

  30. Varma TR, Eldridge PR, Forster A et al (2003) Use of the NeuroMate stereotactic robot in frameless mode for movement disorder surgery. Stereotact Funct Neurosurg 80(1-4):132–135

    Article  CAS  PubMed  Google Scholar 

  31. Eljamel MS (2006) Robotic application in epilepsy surgery. Int J Med Robot 2:233–237

    Article  CAS  PubMed  Google Scholar 

  32. Chan F, Kassim I, Lo C et al (2009) Image-guided robotic neurosurgery—an in vitro and in vivo point accuracy evaluation experimental study. Surg Neurol 71(6):640–647

    Article  PubMed  Google Scholar 

  33. Cleary K, Watson V, Lindisch D et al (2005) Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot 1(2):40–47

    Article  CAS  PubMed  Google Scholar 

  34. Lieberman IH, Togawa D, Kayanja MM et al (2006) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I—technical development and a test case result. Neurosurgery 59(3):641–650

    Article  PubMed  Google Scholar 

  35. Louw DF, Fielding T, McBeth PB et al (2004) Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54(3):525–536, discussion 536–537

    Article  PubMed  Google Scholar 

  36. Sutherland GR, Latour I, Greer AD (2008) Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm. IEEE Eng Med Biol 27(3):59–65

    Article  Google Scholar 

  37. Sutherland GR, Latour I, Greer AD et al (2008) An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62(2):286–292, discussion 292–293

    Article  PubMed  Google Scholar 

  38. Greer AD, Newhook P, Sutherland GR (2008) Human-machine interface for robotic surgery and stereotaxy. IEEE/ASME Trans Mech 13(3):355–361

    Article  Google Scholar 

  39. Pandya S, Motkoski JW, Serrano-Almeida C et al (2009) Advancing neurosurgery with image-guided robotics. J Neurosurg 111(6):1141–1149

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Canada Foundation for Innovation, Western Economic Diversification Canada, Alberta Advanced Education and Technology, Alberta Heritage Foundation for Medical Research, and the Canadian Institute for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garnette R. Sutherland M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Motkoski, J.W., Sutherland, G.R. (2016). Why Robots Entered Neurosurgery. In: Janowski, M. (eds) Experimental Neurosurgery in Animal Models. Neuromethods, vol 116. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3730-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3730-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3728-8

  • Online ISBN: 978-1-4939-3730-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics