Skip to main content

Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells

  • Protocol
  • First Online:
The Nuclear Receptor Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1443))

Abstract

In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaproniere DM, McKeehan WL (1986) Serial culture of single adult human prostatic epithelial cells in serum-free medium containing low calcium and a new growth factor from bovine brain. Cancer Res 46(2):819–824

    CAS  PubMed  Google Scholar 

  2. McKeehan WL, Adams PS, Rosser MP (1984) Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 44(5):1998–2010

    CAS  PubMed  Google Scholar 

  3. Frame FM et al (2010) Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Exp Cell Res 316(19):3161–3171

    Article  CAS  PubMed  Google Scholar 

  4. Hager S et al (2008) An internal polyadenylation signal substantially increases expression levels of lentivirus-delivered transgenes but has the potential to reduce viral titer in a promoter-dependent manner. Hum Gene Ther 19(8):840–850

    Article  CAS  PubMed  Google Scholar 

  5. Polson ES et al (2013) Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nat Commun 4:1623

    Article  PubMed  Google Scholar 

  6. Kroon P et al (2013) JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 73(16):5288–5298

    Article  CAS  PubMed  Google Scholar 

  7. Oldridge EE et al (2013) Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis 2:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pellacani D et al (2014) DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ 21(5):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pellacani D et al (2011) Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Mol Cancer 10:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swift SL, Burns JE, Maitland NJ (2010) Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 70(1):347–356

    Article  CAS  PubMed  Google Scholar 

  11. Collins AT et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  CAS  PubMed  Google Scholar 

  12. Adamson RE et al (2012) In vitro primary cell culture as a physiologically relevant method for preclinical testing of human oncolytic adenovirus. Hum Gene Ther 23(2):218–230

    Article  CAS  PubMed  Google Scholar 

  13. Birnie R et al (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9(5):R83

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frame FM et al (2013) HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br J Cancer 109(12):3023–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rane JK et al (2014) Conserved two-step regulatory mechanism of human epithelial differentiation. Stem Cell Rep 2(2):180–188

    Article  CAS  Google Scholar 

  16. Guo C et al (2012) Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 7(4):e34219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williamson SC et al (2012) Human alpha(2)beta(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor. PLoS One 7(11):e48944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeter CR et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30(36):3833–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Hoogen C et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173

    Article  PubMed  Google Scholar 

  20. Garraway IP et al (2010) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70(5):491–501

    PubMed  PubMed Central  Google Scholar 

  21. Buhler P et al (2010) Primary prostate cancer cultures are models for androgen-independent transit amplifying cells. Oncol Rep 23(2):465–470

    PubMed  Google Scholar 

  22. Jiang M et al (2010) Functional remodeling of benign human prostatic tissues in vivo by spontaneously immortalized progenitor and intermediate cells. Stem Cells 28(2):344–356

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guzman-Ramirez N et al (2009) In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate 69(15):1683–1693

    Article  CAS  PubMed  Google Scholar 

  24. Attard G et al (2009) A novel, spontaneously immortalized, human prostate cancer cell line, Bob, offers a unique model for pre-clinical prostate cancer studies. Prostate 69(14):1507–1520

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein AS et al (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown MD et al (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 67(13):1384–1396

    Article  PubMed  Google Scholar 

  27. Heer R et al (2006) KGF suppresses alpha2beta1 integrin function and promotes differentiation of the transient amplifying population in human prostatic epithelium. J Cell Sci 119(Pt 7):1416–1424

    Article  CAS  PubMed  Google Scholar 

  28. Shepherd CJ et al (2008) Expression profiling of CD133+ and CD133- epithelial cells from human prostate. Prostate 68(9):1007–1024

    Article  CAS  PubMed  Google Scholar 

  29. Niranjan B et al (2013) Primary culture and propagation of human prostate epithelial cells. Methods Mol Biol 945:365–382

    Article  PubMed  Google Scholar 

  30. Blow NS (2011) Right cell, wrong cell. BioTechniques 51(2):75

    CAS  PubMed  Google Scholar 

  31. Nardone RM (2008) Curbing rampant cross-contamination and misidentification of cell lines. BioTechniques 45(3):221–227

    Article  CAS  PubMed  Google Scholar 

  32. Phuchareon J et al (2009) Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PLoS One 4(6):e6040

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barallon R et al (2010) Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues. In vitro cellular & developmental biology. Animal 46(9):727–732

    Google Scholar 

  34. Schenk E et al (2014) Preclinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. Human gene therapy. Clin Dev 25(1):7–15

    CAS  Google Scholar 

  35. Ulukaya E et al (2013) Differential cytotoxic activity of a novel palladium-based compound on prostate cell lines, primary prostate epithelial cells and prostate stem cells. PLoS One 8(5):e64278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niu J, Zhang B, Chen H (2014) Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol Biotechnol 56(8):681–688

    Article  CAS  PubMed  Google Scholar 

  37. Maitland NJ et al (2010) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2(1):47–61

    Article  Google Scholar 

  38. Hudson DL et al (2001) Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49(2):271–278

    Article  CAS  PubMed  Google Scholar 

  39. Hudson DL et al (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Investig 80(8):1243–1250

    Article  CAS  PubMed  Google Scholar 

  40. Collins AT et al (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114(Pt 21):3865–3872

    CAS  PubMed  Google Scholar 

  41. Richardson GD et al (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545

    Article  CAS  PubMed  Google Scholar 

  42. Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37(3):149–160

    Article  CAS  PubMed  Google Scholar 

  43. Rane JK, Pellacani D, Maitland NJ (2012) Advanced prostate cancer--a case for adjuvant differentiation therapy. Nat Rev Urol 9(10):595–602

    Article  CAS  PubMed  Google Scholar 

  44. Nagle RB et al (1987) Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 47(1):281–286

    CAS  PubMed  Google Scholar 

  45. Humphrey PA (2007) Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol 60(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. El-Alfy M et al (2000) Unique features of the basal cells of human prostate epithelium. Microsc Res Tech 51(5):436–446

    Article  CAS  PubMed  Google Scholar 

  47. Chambers KF et al (2011) Stroma regulates increased epithelial lateral cell adhesion in 3D culture: a role for actin/cadherin dynamics. PLoS One 6(4):e18796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lang SH et al (2010) Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev 19(4):537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lang SH et al (2001) Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. Br J Cancer 85(4):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lang SH et al (2006) Differentiation of prostate epithelial cell cultures by Matrigel/stromal cell glandular reconstruction. In vitro cellular & developmental biology. Animal 42(8–9):273–280

    Google Scholar 

  51. Lang SH et al (2001) Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional Matrigel culture. Cell Growth Differ 12(12):631–640

    CAS  PubMed  Google Scholar 

  52. Pearson JF et al (2009) Polarized fluid movement and not cell death, creates luminal spaces in adult prostate epithelium. Cell Death Differ 16(3):475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Yorkshire Cancer Research Core Grant (Y257PA). Photo credits to: Paula Kroon, Rachel Adamson, Shona Lang, Paul Berry, Stephanie Swift.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fiona M. Frame or Norman J. Maitland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Frame, F.M., Pellacani, D., Collins, A.T., Maitland, N.J. (2016). Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells. In: McEwan, PhD, I. (eds) The Nuclear Receptor Superfamily. Methods in Molecular Biology, vol 1443. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3724-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3724-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3722-6

  • Online ISBN: 978-1-4939-3724-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics