Skip to main content

In Vivo Fluorescence Reflectance Imaging with Subcutaneous Mouse Tumor Models

  • Protocol
  • First Online:
In Vivo Fluorescence Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1444))

Abstract

Optical imaging is undoubtedly one of the most versatile and widely used imaging techniques in both research and clinical practice. Among optical imaging technologies, fluorescence imaging is the most popularly used and has become an essential tool in biomedical science. A key component of fluorescence imaging is fluorescence-producing reporters, including fluorescent dyes and conjugates, as well as fluorescent proteins. For in vivo imaging applications, fluorophores with long emission at the near-infrared (NIR) region are generally preferred to overcome the photon attenuation in living tissue. Here, we describe the in vivo fluorescence imaging of an integrin αυβ3 targeted NIR fluorescent probe (cRGD-ICG-Der-02) using subcutaneous mouse tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

  2. Ballou B, Emst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12:795–805

    Article  CAS  PubMed  Google Scholar 

  3. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25

    Article  CAS  PubMed  Google Scholar 

  4. Wu WT, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou SQ (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–3031

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Deng DW, Qian ZY, Liu F, Chen XY, An LX, Gu YQ (2010) The targeting behavior of folate-nanohydrogel evaluated by near infrared imaging system in tumor-bearing mouse model. Pharm Res 27:46–55

    Article  PubMed  Google Scholar 

  6. Aswendt M, Adamczak J, Tennstaedt A (2014) A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front Cell Neurosci 8:226

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morgan N, English S, Chen W, Chernomordik V, Gandjbakhche A, Russo A, Smith P (2005) Real time in vivo non-invasive optical imaging using a near-infrared fluorescent quantum dots. Acad Radiol 12:313–323

    Article  PubMed  Google Scholar 

  8. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Liu T, Su YP, Luo SL, Zhu Y, Tan X, Fan S, Zhang LL, Zhou Y, Cheng TM, Shi CM (2010) A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 31:6612–6617

    Article  CAS  PubMed  Google Scholar 

  10. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64–70

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Hong H, Xu ZP, Li Z, Cai W (2013) Quantum dot-based nanoprobes for in vivo targeted imaging. Curr Mol Med 13:1549–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conconi MT, Ghezzo F, Dettin M, Urbani L, Grandi C, Guidolin D, Nico B, Di Bello C, Ribatti D, Parnigotto PP (2010) Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences. J Pept Sci 16:349–357

    CAS  PubMed  Google Scholar 

  13. Mather S (2009) Molecular imaging with bioconjugates in mouse models of cancer. Bioconjug Chem 20:631–643

    Article  CAS  PubMed  Google Scholar 

  14. Huveneers S, Truong H, Danen HJ (2007) Integrins: signaling, disease, and therapy. Int J Radiat Biol 83:743–751

    Article  CAS  PubMed  Google Scholar 

  15. Lee S, Xie J, Chen XY (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49:1364–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu Y, Cai WB, Chen XY (2006) Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with cy7-labeled RGD multimers. Mol Imaging Biol 8:226–236

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cao J, Wan S, Tian J, Li S, Deng D, Qian Z, Gu Y (2012) Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. Contrast Media Mol Imaging 7:390–402

    Article  CAS  PubMed  Google Scholar 

  18. Gu Y, Liu F, Fang C, Qian Z, Achilefu S (2010) In vivo investigation of pharmacokinetics of model drug: comparison of near infrared technique with high-performance liquid chromatography. Proc SPIE 7576:75760A-1–75760A-8

    Article  Google Scholar 

  19. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cao, J., Zhou, M. (2016). In Vivo Fluorescence Reflectance Imaging with Subcutaneous Mouse Tumor Models. In: Bai, M. (eds) In Vivo Fluorescence Imaging. Methods in Molecular Biology, vol 1444. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3721-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3721-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3719-6

  • Online ISBN: 978-1-4939-3721-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics