Skip to main content

Cationic Lipid-Based Nucleic Acid Vectors

  • Protocol
  • First Online:
Book cover Non-Viral Gene Delivery Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1445))

Abstract

The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhattacharya S, Bajaj A (2009) Advances in gene delivery through molecular design of cationic lipids. Chem Commun:4632–4656

    Google Scholar 

  3. Martin B, Sainlos M, Aissaoui A, Oudrhiri N, Hauchecorne M, Vigneron JP, Lehn JM, Lehn P (2005) The design of cationic lipids for gene delivery. Curr Pharm Des 11:375–394

    Article  CAS  PubMed  Google Scholar 

  4. Hosseinkhani H, Abedini F, Ou KL, Domb AJ (2015) Polymers in gene therapy technology. Polym Adv Technol 26:198–211

    Article  CAS  Google Scholar 

  5. Schaffert D, Wagner E (2008) Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther 15:1131–1138

    Article  CAS  PubMed  Google Scholar 

  6. Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery - a potential approach for ocular therapy? J Pharm Pharmacol 66:542–556

    Article  CAS  PubMed  Google Scholar 

  7. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  Google Scholar 

  8. Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525:162–169

    Article  CAS  PubMed  Google Scholar 

  9. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Article  CAS  PubMed  Google Scholar 

  10. Elsabahy M, Nazarali A, Foldvari M (2011) Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv 8:235–244

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979

    Article  CAS  PubMed  Google Scholar 

  12. Junquera E, Aicart E (2014) Cationic lipids as transfecting agents of DNA in gene therapy. Curr Top Med Chem 14:649–663

    Article  CAS  PubMed  Google Scholar 

  13. Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T (2015) Synthetic vectors for gene delivery: an overview of their evolution depending on routes of administration. Biotechnol J 10:1370–1389

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Huang Z, MacKay JA, Grube S, Szoka FC Jr (2005) Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J Gene Med 7:67–79

    Article  PubMed  Google Scholar 

  15. Govender D, Ul Islam R, De Koning CB, van Otterlo WAL, Arbuthnot P, Ariatti M, Singh M (2015) Stealth lipoplex decorated with triazole-tethered galactosyl moieties: a strong hepatotropic gene vector. Biotechnol Lett 37:567–575

    Article  CAS  PubMed  Google Scholar 

  16. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34:970–994

    Article  CAS  PubMed  Google Scholar 

  17. Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G (2012) Transfection efficiency boost of cholesterol-containing lipoplexes. Biochim Biophys Acta 1818:2335–2343

    Article  CAS  PubMed  Google Scholar 

  18. Lee JS, Ankone M, Pieters E, Schiffelers RM, Hennink WE, Feijen J (2011) Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J Control Release 155:282–288

    Article  CAS  PubMed  Google Scholar 

  19. Sanz V, Coley HM, Silva SRP, McFadden J (2012) Protamine and chloroquine enhance gene delivery and expression mediated by RNA-wrapped single walled carbon nanotubes. J Nanosci Nanotechnol 12:1739–1747

    Article  CAS  PubMed  Google Scholar 

  20. Kong F, Zhou F, Ge L, Liu X, Wang Y (2012) Mannosylated liposomes for targeted gene delivery. Int J Nanomed 7:1079–1089

    Article  CAS  Google Scholar 

  21. Huang Y, Yang T, Zhang W, Lu Y, Ye P, Yang G, Li B, Qi S, Liu Y, He X, Lee RJ, Xu C, Xiang G (2014) A novel hydrolysis-resistant lipophilic folate derivative enables stable delivery of targeted liposomes in vivo. Int J Nanomed 9:4581–4595

    Google Scholar 

  22. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Miller AD (2009) Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm 6:706–717

    Article  CAS  PubMed  Google Scholar 

  23. Kenny GD, Kamaly N, Kalber TL, Brody LP, Sahuri M, Shamsaei E, Miller AD, Bell JD (2011) Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release 149:111–116

    Article  CAS  PubMed  Google Scholar 

  24. Wurm FM (2013) CHO Quasispecies—implications for manufacturing processes. Processes 1:296–311

    Article  CAS  Google Scholar 

  25. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    CAS  PubMed  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170:211–224

    Article  CAS  PubMed  Google Scholar 

  28. Parvizi P, Jubeli E, Raju L, Khalique NA, Almeer A, Allam H, Al Manaa M, Larsen H, Nicholson D, Pungente MD, Fyles TM (2014) Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids. Int J Pharm 461:145–156

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Koynova R, Parikh H, MacDonald RC (2006) Transfection activity of binary mixtures of cationic O-substituted phosphatidylcholine derivatives: the hydrophobic core strongly modulates physical properties and DNA delivery efficacy. Biophys J 91:3692–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koynova R (2010) Analysis of lipoplex structure and lipid phase changes. Methods Mol Biol 606:399–423

    Article  CAS  PubMed  Google Scholar 

  31. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the British Council (PMI2 Gulf States Cooperation Grant No. RCGS206), the Biomedical Research Program intramural funding at Weill Cornell Medical College in Qatar, and the Qatar National Research Fund under the National Priorities Research Program, award NPRP08-705-3-144. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Pungente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jubeli, E., Goldring, W.P.D., Pungente, M.D. (2016). Cationic Lipid-Based Nucleic Acid Vectors. In: Candiani, G. (eds) Non-Viral Gene Delivery Vectors. Methods in Molecular Biology, vol 1445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3718-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3718-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3716-5

  • Online ISBN: 978-1-4939-3718-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics