Skip to main content

Application of Polyethylenimine-Grafted Silicon Nanowire Arrays for Gene Transfection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1445))

Abstract

Polyplexes are one of the most important and promising approaches to deliver exogenous DNA into cells. However, it is severely restricted by the aggregation of polyplexes. Surface-tethered polyplexes can inhibit the aggregation effect and increase the local concentrations of DNA, exhibiting an excellent potential in gene transfection. Since silicon nanowires have the ability to penetrate the cell membrane, branched polyethylenimine (bPEI)-grafted silicon nanowire arrays (SiNWAs) can stimulate gene transfection to a great extent. Herein, the method for the preparation of bPEI-grafted SiNWAs, as an example of surface-tethered polyplexes, is introduced in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bengali Z, Shea LD (2005) Gene delivery by immobilization to cell-adhesive substrates. MRS Bull 30:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gersbach CA, Coyer SR, Le Doux JM, Garcia AJ (2007) Biomaterial-mediated retroviral gene transfer using self-assembled monolayers. Biomaterials 28:5121–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blum JS, Saltzman WM (2008) High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 129:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bowman K, Sarkar R, Raut S, Leong KW (2008) Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. J Control Release 132:252–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 120:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kong HJ, Kim ES, Huang YC, Mooney DJ (2008) Design of biodegradable hydrogel for the local and sustained delivery of angiogenic plasmid DNA. Pharm Res 25:1230–1238

    Article  CAS  PubMed  Google Scholar 

  7. Jang JH, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Control Release 86:157–168

    Article  CAS  PubMed  Google Scholar 

  8. Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, Zhang J (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials 27:1095–1103

    Article  CAS  PubMed  Google Scholar 

  9. Bielinska AU, Yen A, Wu HL, Zahos KM, Sun R, Weiner ND, Baker JR, Roessler BJ (2000) Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials 21:877–887

    Article  CAS  PubMed  Google Scholar 

  10. Pan J, Lyu Z, Jiang W, Wang H, Liu Q, Tan M, Yuan L, Chen H (2014) Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine. ACS Appl Mater Interfaces 6:14391–14398

    Article  CAS  PubMed  Google Scholar 

  11. Segura T, Shea LD (2002) Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug Chem 13:621–629

    Article  CAS  PubMed  Google Scholar 

  12. Segura T, Volk MJ, Shea LD (2003) Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification. J Control Release 93:69–84

    Article  CAS  PubMed  Google Scholar 

  13. Park IK, Von Recum HA, Jiang SY, Pun SH (2006) Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir 22:8478–8484

    Article  CAS  PubMed  Google Scholar 

  14. Li CY, Yuan W, Jiang H, Li JS, Xu FJ, Yang WT, Ma J (2011) PCL film surfaces conjugated with P(DMAEMA)/gelatin complexes for improving cell immobilization and gene transfection. Bioconjug Chem 22:1842–1851

    Article  CAS  PubMed  Google Scholar 

  15. Holmes CA, Tabrizian M (2013) Substrate-mediated gene delivery from glycol-chitosan/hyaluronic acid polyelectrolyte multilayer films. ACS Appl Mater Interfaces 5:524–531

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MMA (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21334004, 21374070 and 21474072), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (13KJA430006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Wang or Lin Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, H., Pan, J., Chen, H., Yuan, L. (2016). Application of Polyethylenimine-Grafted Silicon Nanowire Arrays for Gene Transfection. In: Candiani, G. (eds) Non-Viral Gene Delivery Vectors. Methods in Molecular Biology, vol 1445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3718-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3718-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3716-5

  • Online ISBN: 978-1-4939-3718-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics