Skip to main content

From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides

  • Protocol
  • First Online:
Non-Viral Gene Delivery Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1445))

Abstract

Artificial oligoamino acids with appropriate protecting groups can be used for the sequential assembly of oligoaminoamides on solid-phase. With the help of these oligoamino acids multifunctional nucleic acid (NA) carriers can be designed and produced in highly defined topologies. Here we describe the synthesis of the artificial oligoamino acid Fmoc-Stp(Boc3)-OH, the subsequent assembly into sequence-defined oligomers and the formulation of tumor-targeted plasmid DNA (pDNA) polyplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaffert D, Wagner E (2008) Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther 15(16):1131–1138

    Article  CAS  PubMed  Google Scholar 

  2. Lächelt U, Kos P, Mickler FM et al (2014) Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomed NBM 1:35–44. doi:10.1016/j.nano.2013.07.008

    Article  Google Scholar 

  3. Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev. 115(19):11043–11078. doi:10.1021/cr5006793

    Google Scholar 

  4. Ziebarth JD, Wang Y (2010) Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations. Biomacromolecules 11(1):29–38. doi:10.1021/bm900842d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51(1-2):34–36

    CAS  Google Scholar 

  7. Fischer D, Li Y, Ahlemeyer B et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131

    Article  CAS  PubMed  Google Scholar 

  8. Breunig M, Lungwitz U et al (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A 104(36):14454–14459. doi:10.1073/pnas.0703882104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chollet P, Favrot MC et al (2002) Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 4(1):84–91

    Article  PubMed  Google Scholar 

  10. Schaffert D, Badgujar N, Wagner E (2011) Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Org Lett 13(7):1586–1589. doi:10.1021/ol200381z

    Article  CAS  PubMed  Google Scholar 

  11. Schaffert D, Troiber C, Salcher EE et al (2011) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 50(38):8986–8989. doi:10.1002/anie.201102165

    Article  CAS  PubMed  Google Scholar 

  12. Schaffert D, Troiber C, Wagner E (2012) New sequence-defined polyaminoamides with tailored endosomolytic properties for plasmid DNA delivery. Bioconjug Chem 23(6):1157–1165. doi:10.1021/bc200614x

    Article  CAS  PubMed  Google Scholar 

  13. Scholz C, Kos P, Wagner E (2014) Comb-like oligoaminoethane carriers: change in topology improves pDNA delivery. Bioconjug Chem 25(2):251–261. doi:10.1021/bc400392y

    Article  CAS  PubMed  Google Scholar 

  14. Salcher EE, Kos P, Fröhlich T et al (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: Impact of building blocks on efficacy. J Control Release 164(3):380–386. doi:10.1016/j.jconrel.2012.06.023

    Article  CAS  PubMed  Google Scholar 

  15. Martin I, Dohmen C, Mas-Moruno C et al (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10(16):3258–3268. doi:10.1039/c2ob06907e

    Article  CAS  PubMed  Google Scholar 

  16. Scholz C, Kos P, Leclercq L et al (2014) Correlation of length of linear oligo(ethanamino) amides with gene transfer and cytotoxicity. ChemMedChem 9(9):2104–2110. doi:10.1002/cmdc.201300483

    Article  CAS  PubMed  Google Scholar 

  17. Klein PM, Müller K, Gutmann C et al (2015) Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. J Control Release 205:109–119. doi:10.1016/j.jconrel.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  18. Leng QX, Mixson AJ (2005) Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection. Nucleic Acids Res 33(4):e40. doi:10.1039/nar/gni040

    Article  PubMed  PubMed Central  Google Scholar 

  19. Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10(3):406–411. doi:10.1021/bc9801070

    Article  CAS  PubMed  Google Scholar 

  20. Hashemi M, Parhiz BH et al (2011) Modified polyethyleneimine with histidine-lysine short peptides as gene carrier. Cancer Gene Ther 18(1):12–19. doi:10.1038/cgt.2010.57

    Article  CAS  PubMed  Google Scholar 

  21. Knop K, Hoogenboom R et al (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308. doi:10.1002/anie.200902672

    Article  CAS  PubMed  Google Scholar 

  22. Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36(6):892–899

    Article  CAS  PubMed  Google Scholar 

  23. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6(8):637–645. doi:10.1038/nrc1912

    Article  CAS  PubMed  Google Scholar 

  24. Zhao P, Grabinski T, Gao C et al (2007) Identi-fication of a met-binding peptide from a phage display library. Clin Cancer Res 13(20):6049–6055. doi:10.1158/1078-0432.CCR-07-0035

    Google Scholar 

  25. Kim EM, Park EH, Cheong SJ et al (2009) In vivo imaging of mesenchymal-epithelial transition factor (c-Met) expression using an optical imaging system. Bioconjug Chem 20(7):1299–1306. doi:10.1021/bc8005539

    Article  CAS  PubMed  Google Scholar 

  26. Kos P, Lächelt U, Herrmann A et al (2015) Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 7(12):5350–5362. doi:10.1039/c4nr06556e

    Article  CAS  PubMed  Google Scholar 

  27. Broda E, Mickler FM, Lächelt U et al (2015) Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions. J Control Release 213:79–85. doi:10.1016/j.jconrel.2015.06.030

    Article  CAS  PubMed  Google Scholar 

  28. Kaiser E, Colescott RL et al (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) Excellence Cluster ″Nanosystems Initiative Munich″ and DFG Collaborative Research Center SFB824. We thank Wolfgang Rödl and Miriam Höhn for technical support, and Olga Brück for skillful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lächelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morys, S., Wagner, E., Lächelt, U. (2016). From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides. In: Candiani, G. (eds) Non-Viral Gene Delivery Vectors. Methods in Molecular Biology, vol 1445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3718-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3718-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3716-5

  • Online ISBN: 978-1-4939-3718-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics