Skip to main content

Biodegradable Three-Layered Micelles and Injectable Hydrogels

  • Protocol
  • First Online:
Non-Viral Gene Delivery Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1445))

Abstract

Polymeric micelles have found a growing interest as gene vectors due to the serious safety concerns associated with viral vectors. In particular, the cationic polymer polyethylene imine (PEI) has shown relatively high condensation and transfection efficiencies. Additionally, polyethylene glycol (PEG) modification of polymeric gene vectors has dramatically improved their biological properties, including enhanced biocompatibility, prolonged circulation time, and increased bio-distribution. However, PEG grafting of PEI for subsequent condensation of nucleic acids (NAs) does not necessarily result in the formation of a PEI/NAs core with a PEG corona. But often times, the presence of PEG interferes with PEI’s electrostatic interaction with NAs. We describe here a facile method to prepare multilayered biodegradable micelles which address some of the critical drawbacks associated with current PEI-based systems. The polyplex micelles have superb stability and stealth properties. Moreover, we describe a method to prepare fully biodegradable and biocompatible injectable hydrogels for use in localized gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  PubMed  Google Scholar 

  2. Vagner J, Qu HC, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12(3):292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos MG, Hodoscek M, Grdadolnik SG (2011) Strategies in the rational drug design. Curr Med Chem 18(17):2517–2530

    Article  CAS  PubMed  Google Scholar 

  4. Singh V (2014) Recent advancements in synthetic biology: current status and challenges. Gene 535(1):1–11

    Article  CAS  PubMed  Google Scholar 

  5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCcormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Article  CAS  PubMed  Google Scholar 

  6. Wiseman JW, Goddard CA, McLelland D, Colledge WH (2003) A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Ther 10(19):1654–1662

    Article  CAS  PubMed  Google Scholar 

  7. Chollet P, Favrot MC, Hurbin A, Coll JL (2002) Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 4(1):84–91

    Article  PubMed  Google Scholar 

  8. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther 11(6):990–995

    Article  CAS  PubMed  Google Scholar 

  9. Breunig M, Lungwitz U, Liebl R, Goepferich A (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A 104(36):14454–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merkel OM, Urbanics R, Bedocs P, Rozsnyay Z, Rosivall L, Toth M, Kissel T, Szebeni J (2011) In vitro and in vivo complement activation and related anaphylactic effects associated with polyethylenimine and polyethylenimine-graft-poly(ethylene glycol) block copolymers. Biomaterials 32(21):4936–4942

    Article  CAS  PubMed  Google Scholar 

  11. Moret I, Peris JE, Guillem VM, Benet M, Revert F, Dasi F, Crespo A, Alino SF (2001) Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release 76(1-2):169–181

    Article  CAS  PubMed  Google Scholar 

  12. Petersen H, Fechner PM, Fischer D, Kissel T (2002) Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules 35(18):6867–6874

    Article  CAS  Google Scholar 

  13. Kunath K, von Harpe A, Petersen H, Fischer D, Voigt K, Kissel T, Bickel U (2002) The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappa B decoy in mice. Pharm Res 19(6):810–817

    Article  CAS  PubMed  Google Scholar 

  14. Bauhuber S, Liebl R, Tomasetti L, Rachel R, Goepferich A, Breunig M (2012) A library of strictly linear poly(ethylene glycol)-poly(ethylene imine) diblock copolymers to perform structure-function relationship of non-viral gene carriers. J Control Release 162(2):446–455

    Article  CAS  PubMed  Google Scholar 

  15. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60(1):21–37

    Article  CAS  PubMed  Google Scholar 

  16. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109(2):259–302

    Article  CAS  PubMed  Google Scholar 

  17. Lee JI, Kim HS, Yoo HS (2009) DNA nanogels composed of chitosan and Pluronic with thermo-sensitive and photo-crosslinking properties. Int J Pharm 373(1-2):93–99

    Article  CAS  PubMed  Google Scholar 

  18. Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, Brandacher G, Schneider JP (2014) Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun 5:9

    Article  Google Scholar 

  19. Lei P, Padmashali RM, Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30(22):3790–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E (2010) Calcium alginate phosphate-DNA nanoparticle gene delivery from hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92A(3):1131–1138

    CAS  Google Scholar 

  21. Li ZH, Ning W, Wang JM, Choi A, Lee PY, Tyagi P, Huang L (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20(6):884–888

    Article  CAS  PubMed  Google Scholar 

  22. Kasper FK, Seidlits SK, Tang A, Crowther RS, Carney DH, Barry MA, Mikos AG (2005) In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 104(3):521–539

    Article  CAS  PubMed  Google Scholar 

  23. Abebe DG, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T (2015) Three-layered biodegradable micelles prepared by two-step self-assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromol Biosci 15(5):698–711

    Article  CAS  PubMed  Google Scholar 

  24. Abebe DG, Fujiwara T (2012) Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of Pre-mixed copolymers with different PEG lengths. Biomacromolecules 13(6):1828–1836

    Article  CAS  PubMed  Google Scholar 

  25. Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

OMM acknowledges the Wayne State University Start-Up grant. The Electron Microscopy Core Facility at Wayne State University is partially supported by NSF-MRI grant 0216084 and NSF-MRI grant 0922912. We are grateful to Dr. Zhi Mei for expert support with the TEM imaging of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia M. Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abebe, D.G., Kandil, R., Kraus, T., Elsayed, M., Fujiwara, T., Merkel, O.M. (2016). Biodegradable Three-Layered Micelles and Injectable Hydrogels. In: Candiani, G. (eds) Non-Viral Gene Delivery Vectors. Methods in Molecular Biology, vol 1445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3718-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3718-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3716-5

  • Online ISBN: 978-1-4939-3718-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics