Skip to main content

Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy

  • Protocol
  • First Online:
Natural Killer Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1441))

Abstract

NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors and cells infected by viruses. The regulation of NK activation vs inhibition is regulated by the expression of a variety of NK receptors (NKRs) and specific NKRs’ ligands expressed on their targets. However, factors limiting NK therapy include small numbers of active NK cells in unexpanded peripheral blood and lack of specific tumor targeting. Chimeric antigen receptors (CAR) usually include a single-chain Fv variable fragment from a monoclonal antibody, a transmembrane hinge region, and a signaling domain such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4 (CD244) endodimers. Redirecting NK cells with a CAR will circumvent the limitations of the lack of NK targeting specificity. This chapter focuses on the methods to expand human NK cells from peripheral blood by co-culturing with feeder cells and to modify the expanded NK cells efficiently with the in vitro transcribed CAR mRNA by electroporation and to test the functionality of the CAR-modified expanded NK cells for use in adoptive cellular immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12:500–508

    Article  CAS  PubMed  Google Scholar 

  2. Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49. doi:10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510. doi:10.1038/ni1582

    Article  CAS  PubMed  Google Scholar 

  4. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531. doi:10.1038/nri1863

    Article  CAS  PubMed  Google Scholar 

  5. Shereck E, Satwani P, Morris E et al (2007) Human natural killer cells in health and disease. Pediatr Blood Cancer 49:615–623. doi:10.1002/pbc.21158

    Article  PubMed  Google Scholar 

  6. Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330. doi:10.1182/blood-2005-08-027979

    Article  CAS  PubMed  Google Scholar 

  7. Verheyden S, Bernier M, Demanet C (2004) Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 18:2002–2007. doi:10.1038/sj.leu.2403525

    Article  CAS  PubMed  Google Scholar 

  8. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383. doi:10.1182/blood-2004-12-4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu Y, Hochberg J, Yahr A et al (2015) Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res 3:333–344. doi:10.1158/2326-6066.CIR-14-0114

    Article  CAS  PubMed  Google Scholar 

  10. Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7:e30264. doi:10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eshhar Z, Waks T, Gross G et al (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733. doi:10.1056/NEJMoa1103849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518. doi:10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra138. doi:10.1126/scitranslmed.3005930

    Article  Google Scholar 

  15. Kochenderfer JN, Dudley ME, Feldman SA et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720. doi:10.1182/blood-2011-10-384388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100. doi:10.1126/science.1068440

    Article  CAS  PubMed  Google Scholar 

  17. Smyth MJ, Hayakawa Y, Takeda K et al (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861. doi:10.1038/nrc928

    Article  CAS  PubMed  Google Scholar 

  18. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124. doi:10.1038/nri1549

    Article  CAS  PubMed  Google Scholar 

  19. Ayello J, van de Ven C, Cairo E et al (2009) Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Exp Hematol 37:1216–1229. doi:10.1016/j.exphem.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  20. Czuczman MS, Olejniczak S, Gowda A et al (2008) Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res 14:1561–1570. doi:10.1158/1078-0432.CCR-07-1254, 14/5/1561 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22. doi:10.1016/j.jim.2004.08.008, S0022-1759(04)00292-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Schuerwegh AJ, Stevens WJ, Bridts CH et al (2001) Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in monocytes. Cytometry 46:172–176. doi:10.1002/cyto.1102 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Erin Morris, RN, for her excellent assistance with the preparation of this manuscript. The authors also thank Dr. Dario Campana (St. Jude Children’s Research Hospital) and Dr. Terrence Geiger (St. Jude Children’s Research Hospital) for kindly providing anti-CD20 scFv. The research for this study was supported by the grant from the Pediatric Cancer Research Foundation and the New York Medical College Intramural Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell S. Cairo M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chu, Y., Flower, A., Cairo, M.S. (2016). Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy. In: Somanchi, S. (eds) Natural Killer Cells. Methods in Molecular Biology, vol 1441. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3684-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3684-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3682-3

  • Online ISBN: 978-1-4939-3684-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics