Skip to main content

Microarray Analysis to Monitor Bacterial Cell Wall Homeostasis

  • Protocol
  • First Online:
Bacterial Cell Wall Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1440))

Abstract

Transcriptomics, the genome-wide analysis of gene transcription, has become an important tool for characterizing and understanding the signal transduction networks operating in bacteria. Here we describe a protocol for quantifying and interpreting changes in the transcriptome of Streptomyces coelicolor that take place in response to treatment with three antibiotics active against different stages of peptidoglycan biosynthesis. The results defined the transcriptional responses associated with cell envelope homeostasis including a generalized response to all three antibiotics involving activation of transcription of the cell envelope stress sigma factor σE, together with elements of the stringent response, and of the heat, osmotic, and oxidative stress regulons. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. The principles behind the protocol are transferable to the study of cell envelope homeostatic mechanisms probed using alternative chemical/environmental insults or in other bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesketh A, Hill C, Mokhtar J, Novotna G, Tran N, Bibb M et al (2011) Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics 12:226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990

    Article  CAS  PubMed  Google Scholar 

  3. Song Y, Lunde CS, Benton BM, Wilkinson BJ (2012) Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob Agents Chemother 56:3157–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Luo Y, Mohamed OA, Liu D, Wei G (2014) Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiol 14:1

    Article  PubMed  Google Scholar 

  5. Lechner S, Prax M, Lange B, Huber C, Eisenreich W, Herbig A et al (2014) Metabolic and transcriptional activities of Staphylococcus aureus challenged with high-doses of daptomycin. Int J Med Microbiol 304:931–940

    Article  CAS  PubMed  Google Scholar 

  6. Scherl A, François P, Charbonnier Y, Deshusses JM, Koessler T, Huyghe A et al (2006) Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC Genomics 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  7. Delauné A, Dubrac S, Blanchet C, Poupel O, Mäder U, Hiron A et al (2012) The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect Immun 80:3438–3453

    Article  PubMed  PubMed Central  Google Scholar 

  8. Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 6:e21323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shikuma NJ, Davis KR, Fong JN, Yildiz FH (2013) The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ Microbiol 15:1387–1399

    Article  CAS  PubMed  Google Scholar 

  10. Reyes LH, Abdelaal AS, Kao KC (2013) Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 79:5313–5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23:133–140

    Article  CAS  PubMed  Google Scholar 

  12. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

    Google Scholar 

  13. Bauer S, Grossman S, Vingron M, Robinson PN (2008) Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24:1650–1651

    Article  CAS  PubMed  Google Scholar 

  14. McCall MN, Almudevar A (2012) Affymetrix GeneChip microarray preprocessing for multivariate analyses. Brief Bioinform 13:536–546

    Article  PubMed  Google Scholar 

  15. Do JH, Choi DK (2008) Clustering approaches to identifying gene expression patterns from DNA microarray data. Mol Cells 25:279–288

    CAS  PubMed  Google Scholar 

  16. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by funding from the Medical Research council, UK (G0700141) and the Royal Society, UK (516002.K5877/ROG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Hesketh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hong, HJ., Hesketh, A. (2016). Microarray Analysis to Monitor Bacterial Cell Wall Homeostasis. In: Hong, HJ. (eds) Bacterial Cell Wall Homeostasis. Methods in Molecular Biology, vol 1440. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3676-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3676-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3674-8

  • Online ISBN: 978-1-4939-3676-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics