Application of Fluorescence Polarization in HTS Assays

  • Xinyi HuangEmail author
  • Ann Aulabaugh
Part of the Methods in Molecular Biology book series (MIMB, volume 1439)


Steady-state measurements of fluorescence polarization have been widely adopted in the field of high-throughput screening for the study of biomolecular interactions. This chapter reviews the basic theory of fluorescence polarization, the underlying principle for using fluorescence polarization to study interactions between small-molecule fluorophores and macromolecular targets, and representative applications of fluorescence polarization in high-throughput screening.

Key words

FP Polarization Anisotropy Competition binding High-throughput screening 



The authors would like to thank Ray Unwalla of Wyeth Research for molecular modeling of E-76 and the E-76 based probes, and would like to thank Rebecca Shirk and Belew Mekonnen of Wyeth Research for collaboration on the TF/FVIIa, and would like to thank Shannon Stahler, Nina Kadakia, Gary Kalgaonkar, William Martin, Mariya Gazumyan, Pedro Sobers, and Jim LaRocque of Wyeth Research for contribution to the NR project, and would like to thank Richard Harrison of Wyeth Research for critical review of the chapter.


  1. 1.
    Perrin F (1926) Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’état excite. J Phys Radium 7:390–401CrossRefGoogle Scholar
  2. 2.
    Jameson DM (2001) The seminal contributions of Gregorio Weber in modern fluorescence spectroscopy. In: New trends in fluorescence spectroscopy. Springer, Heidelberg, pp 35–53CrossRefGoogle Scholar
  3. 3.
    Jameson DM, Sawyer WH (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246:283–300CrossRefGoogle Scholar
  4. 4.
    Checovich WJ, Bolger RE, Burke T (1995) Fluorescence polarization - a new tool for cell and molecular biology. Nature 375:141–144CrossRefGoogle Scholar
  5. 5.
    Terpetschnig E, Szmacinski H, Lakowicz JR (1997) Long-lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 278:295–321CrossRefGoogle Scholar
  6. 6.
    Hill JJ, Royer CA (1997) Fluorescence approaches to study of protein-nucleic acid complexation. Methods Enzymol 278:390–416CrossRefGoogle Scholar
  7. 7.
    Kakehi K, Oda Y, Kinoshita M (2001) Fluorescence polarization: analysis of carbohydrate-protein interactions. Anal Biochem 297:111–116CrossRefGoogle Scholar
  8. 8.
    Lakowicz JR (1999) Fluorescence anisotropy. In: Lakowicz JR (ed) Principals of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York, NY, pp 291–319CrossRefGoogle Scholar
  9. 9.
    Perrin F (1929) La fluorescence des solutions. Induction moléculaires. Polarisation et durée d’émission. Photochimie. Ann Phys 10(12):169–275Google Scholar
  10. 10.
    Perrin F (1931) Fluorescence. Durée élémentaire d’émission lumineuse. Conférences d’Actualités Scientifiques et Industrielles XXII, 2–41Google Scholar
  11. 11.
    Lakowicz JR (1999) Introduction to Fluorescence. In: Lakowicz JR (ed) Principals of fluorescence spectroscopy, 2nd edn. Kulwer Academic/Plenum Publishers, New York, NY, pp 1–23CrossRefGoogle Scholar
  12. 12.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry. Part II: Techniques for the study of biological structure and function. W. H. Freeman, Oxford, pp 454–465Google Scholar
  13. 13.
    Lakowicz JR (1999) Time-dependent anisotropy decays. In: Lakowicz JR (ed) Principals of fluorescence spectroscopy, 2nd edn. Kulwer Academic/Plenum Publishers, New York, NY, pp 321–345CrossRefGoogle Scholar
  14. 14.
    Mackman N (2004) Role of tissue factor in homeostasis, thrombosis and vascular development. Arterioscler Thromb Vasc Biol 24:1015–1022CrossRefGoogle Scholar
  15. 15.
    Shirk RA, Vlasuk GP (2007) Inhibitors of Factor VIIa/Tissue Factor. Arterioscler Thromb Vasc Biol 27:1895–1900CrossRefGoogle Scholar
  16. 16.
    Dennis MS, Eigenbrot C, Skelton NJ, Ultsch MH, Santell L, Dwyer MA, O’Connell MP, Lazarus RA (2000) Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 404:465–470CrossRefGoogle Scholar
  17. 17.
    Huang X (2003) Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J Biomol Screen 8:34–38CrossRefGoogle Scholar
  18. 18.
    Huang X (2003) Equilibrium competition binding assay: inhibition mechanism from a single dose response. J Theor Biol 225:369–376CrossRefGoogle Scholar
  19. 19.
    Turconi S, Shea K, Ashman S, Fantom K, Earnshaw DL, Bingham RP, Haupts UM, Brown MJB, Pope A (2001) Real experiences of uHTS: a prototypic 1536-well fluorescence anisotropy-based uHTS screen and application of well-level quality control procedures. J Biomol Screen 6:275–290CrossRefGoogle Scholar
  20. 20.
    Wu G, Yuan Y, Hodge CN (2003) Determining appropriate substrate conversion for enzymatic assays in high-throughput screening. J Biomol Screen 8:694–700CrossRefGoogle Scholar
  21. 21.
    Unpublished resultsGoogle Scholar
  22. 22.
    Lakowicz JR, Gryczynski I, Gryczynski Z, Danielsen E (1992) Time-resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-photon excitation and frequency-domain fluorometry. J Phys Chem 96:3000–3006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Immunology, Inflammation and Infectious Diseases Discovery and Translational Area Roche Pharma Research & Early DevelopmentRoche Innovation Center Shanghai, Roche R&D Center (China) LtdPudongChina

Personalised recommendations