Skip to main content

Role of Immune Aging in Susceptibility to West Nile Virus

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1435))

Abstract

West Nile virus (WNV) can cause severe neuroinvasive disease in humans and currently no vaccine or specific treatments are available. As aging is the most prominent risk factor for WNV, age-related immune dysregulation likely plays an essential role in host susceptibility to infection with WNV. In this review, we summarize recent findings in effects of aging on immune responses to WNV infection. In particular, we focus on the age-dependent dysregulation of innate immune cell types—neutrophils, macrophages, and dendritic cells—in response to WNV infection, as well as age-related alterations in NK cells and γδ T cells that may associate with increased WNV susceptibility in older people. We also highlight two advanced technologies, i.e., mass cytometry and microRNA profiling, which significantly contribute to systems-level study of immune dysregulation in aging and should facilitate new discoveries for therapeutic intervention against WNV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubler DJ (2007) The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis 45(8):1039–1046

    Article  PubMed  Google Scholar 

  2. Lindsey NP, Lehman JA, Staples JE, Fischer M, Division of Vector-Borne Diseases, N.C.f.E., and Zoonotic Infectious Diseases, C.D.C. (2013) West Nile virus and other arboviral diseases – United States. MMWR Morb Mortal Wkly Rep 63(24):521–526

    Google Scholar 

  3. Qian F, Goel G, Meng H, Wang X, You F, Devine L, Raddassi K, Garcia MN, Murray KO, Bolen CR, Gaujoux R, Shen-Orr SS, Hafler D, Fikrig E, Xavier R, Kleinstein SH, Montgomery RR (2015) Systems immunology reveals markers of susceptibility to West Nile virus infection. Clin Vaccine Immunol 22(1):6–16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Montgomery RR, Murray KO (2015) Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 13(3):317–325

    Article  CAS  PubMed  Google Scholar 

  5. Colpitts TM, Conway MJ, Montgomery RR, Fikrig E (2012) West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev 25(4):635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. United Nations. Department of Economic and Social Affairs. Population Division (2002) World population ageing, 1950–2050. United Nations, New York, NY, p 483, xlix

    Google Scholar 

  7. Montgomery RR, Shaw AC (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leuk Biol 98(6):937–943

    Article  CAS  Google Scholar 

  8. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR (2010) A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 202(12):1804–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Nathan D, Huitinga I, Lustig S, van Rooijen N, Kobiler D (1996) West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch Virol 141(3-4):459–469

    Article  CAS  PubMed  Google Scholar 

  11. Silva MC, Guerrero-Plata A, Gilfoy FD, Garofalo RP, Mason PW (2007) Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol 81(24):13640–13648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181(8):5183–5188

    Article  Google Scholar 

  13. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  14. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15(7):602–611

    Article  CAS  PubMed  Google Scholar 

  15. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30(11):513–521

    Article  CAS  PubMed  Google Scholar 

  16. Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670

    Article  CAS  PubMed  Google Scholar 

  17. Peters T, Weiss JM, Sindrilaru A, Wang H, Oreshkova T, Wlaschek M, Maity P, Reimann J, Scharffetter-Kochanek K (2009) Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 130(9):564–587

    Article  CAS  PubMed  Google Scholar 

  18. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O'Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70(6):881–886

    CAS  PubMed  Google Scholar 

  19. Fulop T Jr, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J, Rola-Pleszczynski M, Gagne D, Wagner JR, Khalil A, Dupuis G (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96(1-3):15–34

    Article  CAS  PubMed  Google Scholar 

  20. Hazeldine J, Harris P, Chapple IL, Grant M, Greenwood H, Livesey A, Sapey E, Lord JM (2014) Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell 13(4):690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Larbi A, Douziech N, Fortin C, Linteau A, Dupuis G, Fulop T Jr (2005) The role of the MAPK pathway alterations in GM-CSF modulated human neutrophil apoptosis with aging. Immun Ageing 2(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qian F, Guo X, Wang X, Yuan X, Chen S, Malawista SE, Bockenstedt LK, Allore HG, Montgomery RR (2014) Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging (Albany, NY) 6(2):131–139

    Article  Google Scholar 

  23. Kong KF, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR (2008) Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol 82(15):7613–7623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24(5):331–341

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Tapia D, Hassett DE, Mitchell WJ Jr, Johnson GC, Kleiboeker SB (2007) West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13(2):130–138

    Article  CAS  PubMed  Google Scholar 

  26. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10(12):1366–1373

    Article  CAS  PubMed  Google Scholar 

  27. Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS (2008) Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 82(18):8956–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  29. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, Chen S, Towle V, Belshe RB, Fikrig E, Allore HG, Montgomery RR, Shaw AC (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184(5):2518–2527

    Article  CAS  PubMed  Google Scholar 

  30. Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 70(10):777–784

    Article  CAS  PubMed  Google Scholar 

  31. Sridharan A, Esposo M, Kaushal K, Tay J, Osann K, Agrawal S, Gupta S, Agrawal A (2011) Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr) 33(3):363–376

    Article  CAS  Google Scholar 

  32. Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, Montgomery RR (2011) Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 203(10):1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  CAS  PubMed  Google Scholar 

  34. Strauss-Albee DM, Horowitz A, Parham P, Blish CA (2014) Coordinated regulation of NK receptor expression in the maturing human immune system. J Immunol 193(10):4871–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  36. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151

    Article  CAS  PubMed  Google Scholar 

  37. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4):458–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campbell KS, Hasegawa J (2013) Natural killer cell biology: an update and future directions. J Allergy Clin Immunol 132(3):536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zitvogel L, Terme M, Borg C, Trinchieri G (2006) Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 298:157–174

    CAS  PubMed  Google Scholar 

  41. Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    Article  CAS  PubMed  Google Scholar 

  42. Altfeld M, Fadda L, Frleta D, Bhardwaj N (2011) DCs and NK cells: critical effectors in the immune response to HIV-1. Nat Rev Immunol 11(3):176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  CAS  PubMed  Google Scholar 

  44. Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 32(6):1524–1529

    Article  CAS  PubMed  Google Scholar 

  45. Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61

    Article  CAS  PubMed  Google Scholar 

  46. Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A (2009) NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183(4):2610–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang M, Daniel S, Huang Y, Chancey C, Huang Q, Lei YF, Grinev A, Mostowski H, Rios M, Dayton A (2010) Anti-West Nile virus activity of in vitro expanded human primary natural killer cells. BMC Immunol 11:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shrestha B, Samuel MA, Diamond MS (2006) CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 80(1):119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80(19):9349–9360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA (2013) Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 5(208):208ra145

    Article  PubMed  PubMed Central  Google Scholar 

  51. Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA (2015) Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 7(297):297ra115

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chien YH, Bonneville M (2006) Gamma delta T cell receptors. Cell Mol Life Sci 63(18):2089–2094

    Article  CAS  PubMed  Google Scholar 

  53. Wallace M, Malkovsky M, Carding SR (1995) Gamma/delta T lymphocytes in viral infections. J Leukoc Biol 58(3):277–283

    CAS  PubMed  Google Scholar 

  54. Wang T, Welte T (2013) Role of natural killer and gamma-delta T cells in West Nile virus infection. Viruses 5(9):2298–2310

    Article  PubMed  PubMed Central  Google Scholar 

  55. O'Brien RL, Roark CL, Born WK (2009) IL-17-producing gammadelta T cells. Eur J Immunol 39(3):662–666

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poccia F, Agrati C, Castilletti C, Bordi L, Gioia C, Horejsh D, Ippolito G, Chan PK, Hui DS, Sung JJ, Capobianchi MR, Malkovsky M (2006) Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis 193(9):1244–1249

    Article  CAS  PubMed  Google Scholar 

  57. Bank I, Marcu-Malina V (2014) Quantitative peripheral blood perturbations of gammadelta T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 47(3):311–333

    Article  CAS  PubMed  Google Scholar 

  58. Qin G, Liu Y, Zheng J, Ng IH, Xiang Z, Lam KT, Mao H, Li H, Peiris JS, Lau YL, Tu W (2011) Type 1 responses of human Vgamma9Vdelta2 T cells to influenza A viruses. J Virol 85(19):10109–10116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Colonna-Romano G, Aquino A, Bulati M, Lio D, Candore G, Oddo G, Scialabba G, Vitello S, Caruso C (2004) Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol 39(10):1439–1446

    Article  CAS  PubMed  Google Scholar 

  60. Argentati K, Re F, Donnini A, Tucci MG, Franceschi C, Bartozzi B, Bernardini G, Provinciali M (2002) Numerical and functional alterations of circulating gammadelta T lymphocytes in aged people and centenarians. J Leukoc Biol 72(1):65–71

    CAS  PubMed  Google Scholar 

  61. Colonna-Romano G, Potestio M, Aquino A, Candore G, Lio D, Caruso C (2002) Gamma/delta T lymphocytes are affected in the elderly. Exp Gerontol 37(2-3):205–211

    Article  CAS  PubMed  Google Scholar 

  62. Ludmilamuller GP (2013) Introduction to ageing of the adaptive immune system. In: Bosch JA et al (eds) Immunosenescence. Springer, London

    Google Scholar 

  63. Rymkiewicz PD, Heng YX, Vasudev A, Larbi A (2012) The immune system in the aging human. Immunol Res 53(1-3):235–250

    Article  CAS  PubMed  Google Scholar 

  64. Brien JD, Uhrlaub JL, Hirsch A, Wiley CA, Nikolich-Zugich J (2009) Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med 206(12):2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Uhrlaub JL, Brien JD, Widman DG, Mason PW, Nikolich-Zugich J (2011) Repeated in vivo stimulation of T and B cell responses in old mice generates protective immunity against lethal West Nile virus encephalitis. J Immunol 186(7):3882–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yao Y, Liu R, Shin MS, Trentalange M, Allore H, Nassar A, Kang I, Pober JS, Montgomery RR (2014) CyTOF supports efficient detection of immune cell subsets from small samples. J Immunol Methods 415:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552

    Article  CAS  PubMed Central  Google Scholar 

  73. Han A, Newell EW, Glanville J, Fernandez-Becker N, Khosla C, Chien YH, Davis MM (2013) Dietary gluten triggers concomitant activation of CD4+ and CD8+ alphabeta T cells and gammadelta T cells in celiac disease. Proc Natl Acad Sci U S A 110(32):13073–13078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gaudilliere B, Fragiadakis GK, Bruggner RV, Nicolau M, Finck R, Tingle M, Silva J, Ganio EA, Yeh CG, Maloney WJ, Huddleston JI, Goodman SB, Davis MM, Bendall SC, Fantl WJ, Angst MS, Nolan GP (2014) Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med 6(255):255ra131

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, Genovese M, Fathman CG, Whiting CC (2015) Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res Ther 17(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wong MT, Chen J, Narayanan S, Lin W, Anicete R, Kiaang HT, De Lafaille MA, Poidinger M, Newell EW (2015) Mapping the diversity of follicular helper T cells in human blood and tonsils using high-dimensional mass cytometry analysis. Cell Rep 11(11):1822–1833

    Article  CAS  PubMed  Google Scholar 

  77. O'Gorman WE, Huang H, Wei YL, Davis KL, Leipold MD, Bendall SC, Kidd BA, Dekker CL, Maecker HT, Chien YH, Davis MM (2014) The split virus influenza vaccine rapidly activates immune cells through Fcgamma receptors. Vaccine 32(45):5989–5997

    Article  PubMed  PubMed Central  Google Scholar 

  78. Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, Kurioka A, Ammendola V, Del Sorbo M, Grazioli F, Esposito ML, Siani L, Traboni C, Hill A, Colloca S, Davis M, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E (2014) A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med 6(261):261ra153

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sen N, Mukherjee G, Arvin AM (2015) Single cell mass cytometry reveals remodeling of human T cell phenotypes by Varicella Zoster virus. Methods 90: 85–94

    Google Scholar 

  80. Whiting CC, Siebert J, Newman AM, Du HW, Alizadeh AA, Goronzy J, Weyand CM, Krishnan E, Fathman CG, Maecker HT (2015) Large-scale and comprehensive immune profiling and functional analysis of normal human aging. PLoS One 10(7), e0133627

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martin V, Wu YC, Kipling D, Dunn-Walters DK (2015) Age-related aspects of human IgM B cell heterogeneity. Ann N Y Acad Sci 1362(1):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Olivieri F, Procopio AD, Montgomery RR (2014) Effect of aging on microRNAs and regulation of pathogen recognition receptors. Curr Opin Immunol 29:29–37

    Article  CAS  PubMed  Google Scholar 

  83. Garg D, Cohen SM (2014) miRNAs and aging: a genetic perspective. Ageing Res Rev 17:3–8

    Article  CAS  PubMed  Google Scholar 

  84. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662

    Article  CAS  PubMed  Google Scholar 

  85. van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507

    Article  PubMed  Google Scholar 

  86. Chen LH, Chiou GY, Chen YW, Li HY, Chiou SH (2010) MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 9(Suppl 1):S59–S66

    Article  CAS  PubMed  Google Scholar 

  87. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308(5721):557–560

    Article  CAS  PubMed  Google Scholar 

  88. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581

    Article  CAS  PubMed  Google Scholar 

  89. Chugh PE, Damania BA, Dittmer DP (2014) Toll-like receptor-3 is dispensable for the innate microRNA response to West Nile virus (WNV). PLoS One 9(8), e104770

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kumar M, Nerurkar VR (2014) Integrated analysis of microRNAs and their disease related targets in the brain of mice infected with West Nile virus. Virology 452–453:143–151

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth R. Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yao, Y., Montgomery, R.R. (2016). Role of Immune Aging in Susceptibility to West Nile Virus. In: Colpitts, T. (eds) West Nile Virus. Methods in Molecular Biology, vol 1435. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3670-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3670-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3668-7

  • Online ISBN: 978-1-4939-3670-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics