Skip to main content

Statistical Tools for the Interpretation of Enzootic West Nile virus Transmission Dynamics

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1435))

Abstract

Interpretation of enzootic West Nile virus (WNV) surveillance indicators requires little advanced mathematical skill, but greatly enhances the ability of public health officials to prescribe effective WNV management tactics. Stepwise procedures for the calculation of mosquito infection rates (IR) and vector index (VI) are presented alongside statistical tools that require additional computation. A brief review of advantages and important considerations for each statistic’s use is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention (2013) West Nile virus in the United States: guidelines for surveillance, prevention, and control. Centers for Disease Control and Prevention, Fort Collins, CO, p 69

    Google Scholar 

  2. Kilpatrick M, Pape WJ (2013) Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol 178:829–835. doi:10.1093/aje/kwt046

    Article  PubMed  PubMed Central  Google Scholar 

  3. Biggerstaff BJ (2009) PooledInfRate, Version 4.0: a Microsoft® Office Excel© Add-In to compute prevalence estimates from pooled samples

    Google Scholar 

  4. Darsie RF, Ward RA (2005) Identification and geographical distribution of the mosquitoes of North America, North of Mexico, pp 1–383

    Google Scholar 

  5. Allan BF, Langerhans RB, Ryberg W et al (2009) Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158:699–708. doi:10.1007/s00442-008-1169-9

    Article  PubMed  Google Scholar 

  6. Kilpatrick AM, Daszak P, Jones MJ et al (2006) Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273:2327–2333. doi:10.1098/rspb.2006.3575

    Article  PubMed  Google Scholar 

  7. Hamer GL, Chaves LF, Anderson TK et al (2011) Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS One 6, e23767. doi:10.1371/journal.pone.0023767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chisenhall DM, Vitek CJ, Richards SL, Mores CN (2008) A method to increase efficiency in testing pooled field-collected mosquitoes. J Am Mosq Control Assoc 24:311–314

    Article  PubMed  Google Scholar 

  9. Gu W, Unnasch TR, Katholi CR et al (2008) Fundamental issues in mosquito surveillance for arboviral transmission. Trans R Soc Trop Med Hyg 102:817–822. doi:10.1016/j.trstmh.2008.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gu W, Novak RJ (2004) Short report: detection probability of arbovirus infection in mosquito populations. Am J Trop Med Hyg 71:636–638

    PubMed  Google Scholar 

  11. Kilpatrick M, Pape WJ (2013) Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol. doi:10.1093/aje/kwt046

    PubMed Central  Google Scholar 

  12. Chung WM, Buseman CM, Joyner SN et al (2013) The 2012 West Nile encephalitis epidemic in Dallas, Texas. JAMA 310:297. doi:10.1001/jama.2013.8267

    Article  CAS  PubMed  Google Scholar 

  13. Nasci RS, Doyle M, Biggerstaff BJ, Lebailly A (2004) Calculation and application of a vector index (VI) reflecting the number of WN virus infected mosquitoes in a population. Σ = Estimated Infection Rate. 79

    Google Scholar 

  14. Gujral IB, Zielinski-Gutierrez EC, Lebailly A, Nasci R (2007) Behavioral risks for West Nile virus. Emerg Infect Dis 13:419–425

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bolling BG, Barker CM, Moore CG et al (2010) Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West nile virus in relation to human disease cases in Northeastern Colorado. J Med Entomol 46:1519–1531

    Article  Google Scholar 

  16. Barker CM, Bolling BG, Black WC et al (2009) Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado. J Vector Ecol 34:276–293. doi:10.1111/j.1948-7134.2009.00036.x

    Article  PubMed  Google Scholar 

  17. Kwan JL, Park BK, Carpenter TE et al (2012) Comparison of enzootic risk measures for predicting West Nile. Emerg Infect Dis 18:2004–2010

    Article  Google Scholar 

  18. Colborn JM, Smith KA, Townsend J et al (2013) West Nile virus outbreak in Phoenix, Arizona—2010. Entomol Observ Epidemiol Corr 29:123–132

    Google Scholar 

  19. Jones RC, Weaver KN, Smith S et al (2011) Use of the vector index and geographic information system to prospectively inform West Nile virus interventions. J Am Mosq Control Assoc 27:315–319

    Article  PubMed  Google Scholar 

  20. Ezenwa VO, Godsey MS, King RJ, Guptill SC (2006) Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci 273:109–117. doi:10.1098/rspb.2005.3284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ezenwa VO, Milheim LE, Coffey MF et al (2007) Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector Borne Zoonotic Dis 7:173–180. doi:10.1089/vbz.2006.0584

    Article  PubMed  Google Scholar 

  22. Brooks CP, Zhang H (2010) A null model of community disassembly effects on vector-borne disease risk. J Theor Biol 264:866–873. doi:10.1016/j.jtbi.2010.03.016

    Article  PubMed  Google Scholar 

  23. Komar N, Langevin S, Hinten S et al (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311–322. doi:10.3201/eid0903.020628

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller E, Huppert A (2013) The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk. PLoS One 8, e80279. doi:10.1371/journal.pone.0080279

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamer GL, Kitron UD, Goldberg TL et al (2009) Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80:268–278

    PubMed  Google Scholar 

  26. Kent R, Juliusson L, Weissmann M et al (2009) Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46:380–390

    Article  PubMed  Google Scholar 

  27. Kilpatrick AM, Kramer LD, Campbell SR et al (2005) West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11:425–429

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ciota AT, Kramer LD (2013) Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 5:3021–3047. doi:10.3390/v5123021

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5, e42. doi:10.1371/journal.pbio.0050042

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hasibeder G, Dye C (1988) Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor Popul Biol 33:31–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Caillouët .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caillouët, K.A., Robertson, S. (2016). Statistical Tools for the Interpretation of Enzootic West Nile virus Transmission Dynamics. In: Colpitts, T. (eds) West Nile Virus. Methods in Molecular Biology, vol 1435. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3670-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3670-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3668-7

  • Online ISBN: 978-1-4939-3670-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics