Skip to main content

Methodology for Identifying Host Factors Involved in West Nile Virus Infection

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1435))

Abstract

The West Nile virus (WNV) infection is a major medical problem for humans and some domesticated animals. WNV infection of host cells involves the interplay of the virus with several host factors. Identification of the host factors impacting on WNV infection can enhance our understanding of virus infection mechanisms, host immune defense mechanisms, and also reveal novel host targets that can be developed as antivirals. RNA interference (RNAi) is a highly efficient genetic tool to discover host genes involved in WNV infection at a genome scale. Here, we describe a protocol for conducting human genome wide RNAi screen to discover novel host factors associated with WNV infection of human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monath TP, Heinz FX (1996) Flaviviruses. In: Fields BN, Knipe BM, Howley PM (eds) Fields virology. Lippincott, Philadelphia, PA, pp 961–1034

    Google Scholar 

  2. Hubálek Z, Halouzka J (1999) West Nile fever: a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leis AA, Stokic DS, Polk JL, Dostrow V, Winkelmann M (2002) A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med 347:1279–1280

    Article  PubMed  Google Scholar 

  4. Turell MJ, O’Guinn M, Oliver J (2000) Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62:413–414

    CAS  PubMed  Google Scholar 

  5. Ulbert S, Magnusson SE (2014) Technologies for the development of West Nile virus vaccines. Future Microbiol 9(10):1221–1232

    Article  CAS  PubMed  Google Scholar 

  6. Krishnan MN, Garcia-Blanco MA (2014) Targeting host factors to treat West Nile and dengue viral infections. Viruses 6(2):683–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colpitts TM, Cox J, Nguyen A, Feitosa F, Krishnan MN, Fikrig E (2011) Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virology 417(1):179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E (2011) Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7(9), e1002189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fredericksen BL, Smith M, Katze MG, Shi PY, Gale M Jr (2004) The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78(14):7737–7747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15(9):591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Panda D, Cherry S (2012) Cell-based genomic screening: elucidating virus-host interactions. Curr Opin Virol 2(6):784–792

    Article  CAS  PubMed  Google Scholar 

  12. Yasunaga A, Hanna SL, Li J, Cho H, Rose PP, Spiridigliozzi A, Gold B, Diamond MS, Cherry S (2014) Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLoS Pathog 10(2):1003914

    Article  Google Scholar 

  13. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455(7210):242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj N. Krishnan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krishnan, M.N. (2016). Methodology for Identifying Host Factors Involved in West Nile Virus Infection. In: Colpitts, T. (eds) West Nile Virus. Methods in Molecular Biology, vol 1435. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3670-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3670-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3668-7

  • Online ISBN: 978-1-4939-3670-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics