Skip to main content

Molecular and Functional Characterization of Histone Deacetylase 4 (HDAC4)

  • Protocol
  • First Online:
Histone Deacetylases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

Abstract

Histone deacetylases (HDACs) regulate various nuclear and cytoplasmic processes. In mammals, these enzymes are divided into four classes, with class II further divided into two subclasses: IIa (HDAC4, HDAC5, HDAC7, HDAC9) and IIb (HDAC6 and HDAC10). While HDAC6 is mainly cytoplasmic and HDAC10 is pancellular, class IIa HDACs are dynamically shuttled between the nucleus and cytoplasm in a signal-dependent manner, indicating that they are unique signal transducers able to transduce signals from the cytoplasm to chromatin in the nucleus. Once inside the nucleus, class IIa HDACs interact with MEF2 and other transcription factors, mainly acting as transcriptional corepressors. Although class IIa HDACs share many molecular properties in vitro, they play quite distinct roles in vivo. This chapter lists methods that we have used for molecular and biochemical characterization of HDAC4, including development of regular and phospho-specific antibodies, deacetylase activity determination, reporter gene assays, analysis of subcellular localization, and determination of interaction with 14-3-3 and MEF2. Although described specifically for HDAC4, the protocols should be adaptable for analysis to the other three class IIa members, HDAC5, HDAC7, and HDAC9, as well as for other proteins with related properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim GW, Yang XJ (2011) Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 36:211–220

    Article  CAS  PubMed  Google Scholar 

  2. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  CAS  PubMed  Google Scholar 

  3. Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D (2001) Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162–166

    Article  CAS  PubMed  Google Scholar 

  4. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang XJ, Grégoire S (2005) Class II histone deacetylases: from sequence to function, regulation and clinical implication. Mol Cell Biol 25:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20:6904–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walkinshaw DR, Weist R, Xiao L, Yan K, Kim GW, Yang XJ (2013) Dephosphorylation at a conserved SP motif governs cAMP sensitivity and nuclear localization of class IIa histone deacetylases. J Biol Chem 288:5591–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walkinshaw DR, Weist R, Kim GW, You L, Xiao L, Nie J, Li CS, Zhao S, Xu M, Yang XJ (2013) The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J Biol Chem 288:9345–9362

    Article  CAS  PubMed Central  Google Scholar 

  10. Pelletier N, Champagne N, Lim H, Yang XJ (2003) Expression, purification, and analysis of MOZ and MORF histone acetyltransferases. Methods 31:24–32

    Article  CAS  PubMed  Google Scholar 

  11. Yan K, Wu CJ, Pelletier N, Yang XJ (2012) Reconstitution of active and stoichiometric multisubunit lysine acetyltransferase complexes in insect cells. Methods Mol Biol 809:445–464

    Article  CAS  PubMed  Google Scholar 

  12. Harlow E, Lane D (1999) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  13. Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 274:11713–11720

    Article  CAS  PubMed  Google Scholar 

  14. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 275:15594–15599

    Article  CAS  PubMed  Google Scholar 

  15. Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14:55–66

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A 96:9112–9117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  CAS  PubMed  Google Scholar 

  19. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  20. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91:961–971

    Article  CAS  PubMed  Google Scholar 

  21. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4:153–166

    Article  CAS  PubMed  Google Scholar 

  22. Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang XJ (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19:7816–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan Z, Rezai-Zadeh N, Zhang X, Seto E (2009) Histone deacetylase activity assay. Methods Mol Biol 523:279–293

    Article  CAS  PubMed  Google Scholar 

  24. Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140

    Article  CAS  PubMed  Google Scholar 

  25. Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ (1999) MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18:5085–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang AH, Yang XJ (2001) Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol 21:5992–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathias RA, Guise AJ, Cristea IM (2015) Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteomics 14:456–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W et al (2012) Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Sci Signal 5:ra39

    Article  CAS  PubMed  Google Scholar 

  29. Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, Talamo F, Orsatti L, Steinkuhler C, Brancolini C (2008) PP2A regulates HDAC4 nuclear import. Mol Biol Cell 19:655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang AH, Gregoire S, Zika E, Xiao L, Li CS, Li H, Wright KL, Ting JP, Yang XJ (2005) Identification of the ankyrin repeat proteins ANKRA and RFXANK as novel partners of class IIa histone deacetylases. J Biol Chem 280:29117–29127

    Article  CAS  PubMed  Google Scholar 

  31. McKinsey TA, Kuwahara K, Bezprozvannaya S, Olson EN (2006) Class II histone deacetylases confer signal responsiveness to the ankyrin-repeat proteins ANKRA2 and RFXANK. Mol Biol Cell 17:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nie J, Xu C, Jin J, Aka JA, Tempel W, Nguyen V, You L, Weist R, Min J, Pawson T et al (2015) Ankyrin repeats of ANKRA2 recognize a PxLPxL motif on the 3M syndrome protein CCDC8. Structure 23:700–712

    Article  CAS  PubMed  Google Scholar 

  33. Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F et al (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21:2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grégoire S, Tremblay AM, Xiao L, Yang Q, Ma K, Nie J, Mao Z, Wu Z, Giguere V, Yang XJ (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J Biol Chem 281:4423–4433

    Article  PubMed  Google Scholar 

  35. Grégoire S, Yang XJ (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25:2273–2282

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A 103:45–50

    Article  CAS  PubMed  Google Scholar 

  37. Cernotta N, Clocchiatti A, Florean C, Brancolini C (2011) Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell 22:278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA et al (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Jiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, L., Yang, XJ. (2016). Molecular and Functional Characterization of Histone Deacetylase 4 (HDAC4). In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics