Skip to main content

Screening the Impact of Sirtuin Inhibitors on Inflammatory and Innate Immune Responses of Macrophages and in a Mouse Model of Endotoxic Shock

  • Protocol
  • First Online:
Histone Deacetylases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

Abstract

The development and screening of pharmacological modulators of histone deacetylases (HDACs), and particularly sirtuins, is a promising field for the identification of new drugs susceptible to be used for treatment strategies in a large array of welfare-associated, autoimmune and oncologic diseases. Here we describe a comprehensive protocol to evaluate the impact of sirtuin-targeting drugs on inflammatory and innate immune responses in vitro and in a preclinical mouse model of endotoxemia. We first provide an overview on strategies to design in vitro experiments, then focus on the analysis of cytokine production by primary macrophages and RAW 267.7 macrophages at the mRNA and protein levels, and finally describe the setup and follow-up of a mouse model of inflammation-driven endotoxic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klar AJ, Fogel S, Macleod K (1979) MAR1-a regulator of the HMa and HMalpha Loci in SACCHAROMYCES CEREVISIAE. Genetics 93:37–50

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13: 225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang H, Khan S, Wang Y et al (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang JY, Hirschey MD, Shimazu T et al (1804) Mitochondrial sirtuins. Biochim Biophys Acta 2010:1645–1651

    Google Scholar 

  5. Carafa V, Nebbioso A, Altucci L (2012) Sirtuins and disease: the road ahead. Front Pharmacol 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Du J, Zhou Y, Su X et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan M, Peng C, Anderson KA et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rauh D, Fischer F, Gertz M et al (2013) An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat Commun 4:2327

    Article  PubMed  Google Scholar 

  9. Choi JE, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 26:24–32

    Article  CAS  PubMed  Google Scholar 

  10. Choudhary C, Weinert BT, Nishida Y et al (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  CAS  PubMed  Google Scholar 

  11. Cencioni C, Spallotta F, Mai A et al (2015) Sirtuin function in aging heart and vessels. J Mol Cell Cardiol 83:55–61

    Article  CAS  PubMed  Google Scholar 

  12. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Lombard DB (2015) Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 22:1060–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Lee SM, Shannon S et al (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119:3048–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grabiec AM, Krausz S, de Jager W et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184:2718–2728

    Article  CAS  PubMed  Google Scholar 

  16. Kim SR, Lee KS, Park SJ et al (2010) Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. J Allergy Clin Immunol 125:449–460, e414

    Article  CAS  PubMed  Google Scholar 

  17. Legutko A, Marichal T, Fievez L et al (2011) Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-gamma activity in dendritic cells. J Immunol 187:4517–4529

    Article  CAS  PubMed  Google Scholar 

  18. Niederer F, Ospelt C, Brentano F et al (2011) SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann Rheum Dis 70:1866–1873

    Article  CAS  PubMed  Google Scholar 

  19. Hah YS, Cheon YH, Lim HS et al (2014) Myeloid deletion of SIRT1 aggravates serum transfer arthritis in mice via nuclear factor-kappaB activation. PLoS One 9:e87733

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lim HW, Kang SG, Ryu JK et al (2015) SIRT1 deacetylates RORγt and enhances Th17 cell generation. J Exp Med 212(6):973

    Article  PubMed  PubMed Central  Google Scholar 

  21. Villalba JM, de Cabo R, Alcain FJ (2012) A patent review of sirtuin activators: an update. Expert Opin Ther Pat 22:355–367

    Article  CAS  PubMed  Google Scholar 

  22. Mellini P, Valente S, Mai A (2015) Sirtuin modulators: an updated patent review (2012–2014). Expert Opin Ther Pat 25:5–15

    CAS  PubMed  Google Scholar 

  23. Lugrin J, Ciarlo E, Santos A et al (1833) The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochim Biophys Acta 2013:1498–1510

    Google Scholar 

  24. Lugrin J, Ding XC, Le Roy D et al (2009) Histone deacetylase inhibitors repress macrophage migration inhibitory factor (MIF) expression by targeting MIF gene transcription through a local chromatin deacetylation. Biochim Biophys Acta 1793:1749–1758

    Article  CAS  PubMed  Google Scholar 

  25. Mombelli M, Lugrin J, Rubino I et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204:1367–1374

    Article  CAS  PubMed  Google Scholar 

  26. Roger T, Lugrin J, Le Roy D et al (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117:1205–1217

    Article  CAS  PubMed  Google Scholar 

  27. Ciarlo E, Savva A, Roger T (2013) Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents 42(Suppl):8–12

    Article  Google Scholar 

  28. Heumann D, Roger T (2002) Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta 323:59–72

    Article  CAS  PubMed  Google Scholar 

  29. Savva A, Roger T (2013) Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 4:387

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cressey D (2015) UK funders demand strong statistics for animal studies. Nature 520:271–272

    Article  CAS  PubMed  Google Scholar 

  31. Roger T, Froidevaux C, Le Roy D et al (2009) Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci U S A 106:2348–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roger T, Delaloye J, Chanson AL et al (2013) Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis 207:331–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.R. is supported by grants from the Swiss National Science Foundation (SNF 138488, 146838, 145014, and 149511) and an interdisciplinary grant from the Faculty of Biology and Medicine of the University of Lausanne (Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Roger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciarlo, E., Roger, T. (2016). Screening the Impact of Sirtuin Inhibitors on Inflammatory and Innate Immune Responses of Macrophages and in a Mouse Model of Endotoxic Shock. In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics