Skip to main content

Detection of Sumo Modification of Endogenous Histone Deacetylase 2 (HDAC2) in Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

Abstract

Small ubiquitin-related modifier (SUMO) is an ubiquitin-like protein that is covalently attached to a variety of target proteins and has a significant role in their regulation. HDAC2 is an important epigenetic regulator, promoting the deacetylation of histones and non-histone proteins. HDAC2 has been shown to be modified by SUMO1 at lysine 462. Here we describe how to detect SUMO modification of endogenous HDAC2 in mammalian cells by immunoblotting. Although in this chapter we use this method to detect HDAC2 modification in mammalian cells, this protocol can be used for any cell type or for any protein of interest.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yang WM, Inouye C, Zeng Y et al (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A 93:12845–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeng Y, Tang CM, Yao YL et al (1998) Cloning and characterization of the mouse histone deacetylase-2 gene. J Biol Chem 273:28921–28930

    Article  CAS  PubMed  Google Scholar 

  3. Segre CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848

    PubMed  Google Scholar 

  4. Tsai SC, Seto E (2002) Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 277:31826–31833

    Article  CAS  PubMed  Google Scholar 

  5. Adenuga D, Rahman I (2010) Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 498:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kramer OH, Zhu P, Ostendorff HP et al (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Li X, Guo B (2010) Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res 70:646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang SR, Chida AS, Bauter MR et al (2006) Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 291:L46–L57

    Article  CAS  PubMed  Google Scholar 

  9. Nott A, Watson PM, Robinson JD et al (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415

    Article  CAS  PubMed  Google Scholar 

  10. Doyle K, Fitzpatrick FA (2010) Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J Biol Chem 285:17417–17424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Citro S, Chiocca S (2013) Sumo paralogs: redundancy and divergencies. Front Biosci 5:544–553

    Article  Google Scholar 

  12. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659

    Article  CAS  PubMed  Google Scholar 

  13. Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  CAS  PubMed  Google Scholar 

  15. Brandl A, Wagner T, Uhlig KM et al (2012) Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol 4:284–293

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Vatsyayan J, Gao C et al (2010) HDAC2 promotes eIF4E sumoylation and activates mRNA translation gene specifically. J Biol Chem 285:18139–18143

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Citro S, Jaffray E, Hay RT et al (2013) A role for paralog-specific sumoylation in histone deacetylase 1 stability. J Mol Cell Biol 5:416–427

    Article  CAS  PubMed  Google Scholar 

  18. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  CAS  PubMed  Google Scholar 

  19. Colombo R, Boggio R, Seiser C et al (2002) The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase 1. EMBO Rep 3:1062–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro to Susanna Chiocca (AIRC IG5732, AIRC IG12075). SCi was supported by a fellowship from Fondazione Umberto Veronesi (FUV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Chiocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Citro, S., Chiocca, S. (2016). Detection of Sumo Modification of Endogenous Histone Deacetylase 2 (HDAC2) in Mammalian Cells. In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics