Skip to main content

Cloning and Characterization of Sirtuin3 (SIRT3)

  • Protocol
  • First Online:
Histone Deacetylases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1436))

  • 2284 Accesses

Abstract

Mitochondria play a pivotal role in maintaining cellular homeostasis and regulating longevity. SIRT3 is a mitochondrial sirtuin mediating the deacetylation of various metabolic and antioxidant enzymes, in turn controlling energy metabolism, stress resistance, and the pace of ageing. To study the function of SIRT3, a proteomics-based approach is employed for identifying the protein-binding partners of this enzyme in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  CAS  PubMed  Google Scholar 

  3. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  PubMed  Google Scholar 

  4. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, Vanhoutte PM, Wang Y (2012) Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation 126:729–740

    Article  CAS  PubMed  Google Scholar 

  6. Xu C, Cai Y, Fan P, Bai B, Chen J, Deng HB, Che CM, Xu A, Vanhoutte PM, Wang Y (2015) Calorie restriction prevents metabolic ageing caused by abnormal SIRT1 function in adipose tissues. Diabetes 64:1576–1590

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Xu C, Liang Y, Vanhoutte PM (2012) SIRT1 in metabolic syndrome: where to target matters. Pharmacol Ther 136:305–318

    Article  CAS  PubMed  Google Scholar 

  8. Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 76:267–277

    Article  CAS  PubMed  Google Scholar 

  10. Cooper HM, Spelbrink JN (2008) The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J 411:279–285

    Article  CAS  PubMed  Google Scholar 

  11. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 99:13653–13658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albani D, Ateri E, Mazzuco S, Ghilardi A, Rodilossi S, Biella G, Ongaro F, Antuono P, Boldrini P, Di Giorgi E, Frigato A, Durante E, Caberlotto L, Zanardo A, Siculi M, Gallucci M, Forloni G (2014) Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study “Treviso Longeva (TRELONG)”. Age 36:469–478

    Article  CAS  PubMed  Google Scholar 

  13. Bellizzi D, Dato S, Cavalcante P, Covello G, Di Cianni F, Passarino G, Rose G, De Benedictis G (2007) Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics 89:143–150

    Article  CAS  PubMed  Google Scholar 

  14. Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, BonaFe M, Franceschi C, Tan Q, Boiko S, Yashin AI, De Benedictis G (2003) Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 38:1065–1070

    Article  CAS  PubMed  Google Scholar 

  15. Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hallows WC, Albaugh BN, Denu JM (2008) Where in the cell is SIRT3? – functional localization of an NAD+-dependent protein deacetylase. Biochem J 411:e11–e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667

    Article  CAS  PubMed  Google Scholar 

  21. Sebastian C, Mostoslavsky R (2010) SIRT3 in calorie restriction: can you hear me now? Cell 143:667–668

    Article  CAS  PubMed  Google Scholar 

  22. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, Jacobson MP, Verdin E (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105:14447–14452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, Deng CX, Spitz DR, Gius D (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 4:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombard DB, Zwaans BM (2014) SIRT3: as simple as it seems? Gerontology 60:56–64

    Article  CAS  PubMed  Google Scholar 

  28. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639

    Article  CAS  PubMed  Google Scholar 

  31. Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM, Leung PT, Wang Y (2009) Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 9:2444–2456

    Article  CAS  PubMed  Google Scholar 

  32. Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444:1–10

    Article  CAS  PubMed  Google Scholar 

  33. Shih J, Donmez G (2013) Mitochondrial sirtuins as therapeutic targets for age-related disorders. Genes Cancer 4:91–96

    Article  PubMed  PubMed Central  Google Scholar 

  34. Osborne B, Cooney GJ, Turner N (2014) Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? Biochim Biophys Acta 1840:1295–1302

    Article  CAS  PubMed  Google Scholar 

  35. Parihar P, Solanki I, Mansuri ML, Parihar MS (2015) Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Exp Gerontol 61:130–141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Man, A.W.C., Bai, B., Wang, Y. (2016). Cloning and Characterization of Sirtuin3 (SIRT3). In: Sarkar, S. (eds) Histone Deacetylases. Methods in Molecular Biology, vol 1436. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3667-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3667-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3665-6

  • Online ISBN: 978-1-4939-3667-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics