Skip to main content

Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1437))

Abstract

Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin RNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction, and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Oyamada M, Oyamada Y, Takamatsu T (2005) Regulation of connexin expression. Biochim Biophys Acta 1719:6–23

    Article  CAS  PubMed  Google Scholar 

  2. D’hondt C, Iyyathurai J, Vinken M et al (2013) Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 105:373–398

    Article  PubMed  Google Scholar 

  3. Piechocki MP, Toti RM, Fernstrom MJ et al (2000) Liver cell-specific transcriptional regulation of connexin32. Biochim Biophys Acta 1491:107–122

    Article  CAS  PubMed  Google Scholar 

  4. Koffler LD, Fernstrom MJ, Akiyama TE et al (2002) Positive regulation of connexin32 transcription by hepatocyte nuclear factor-1alpha. Arch Biochem Biophys 407:160–167

    Article  CAS  PubMed  Google Scholar 

  5. Vinken M, De Rop E, Decrock E et al (2009) Epigenetic regulation of gap junctional intercellular communication: more than a way to keep cells quiet? Biochim Biophys Acta 1795:53–61

    CAS  PubMed  Google Scholar 

  6. Oyamada M, Takebe K, Oyamada Y (2013) Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta 1828:118–131

    Article  CAS  PubMed  Google Scholar 

  7. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parker RM, Barnes NM (1999) mRNA: detection by in situ and northern hybridization. Methods Mol Biol 106:247–283

    CAS  PubMed  Google Scholar 

  9. Hod Y (1992) A simplified ribonuclease protection assay. Biotechniques 13:852–854

    CAS  PubMed  Google Scholar 

  10. Saccomanno CF, Bordonaro M, Chen JS et al (1992) A faster ribonuclease protection assay. Biotechniques 13:846–850

    CAS  PubMed  Google Scholar 

  11. Weis JH, Tan SS, Martin BK et al (1992) Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8:263–264

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Brown MJ (1999) mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. Anal Biochem 269:198–201

    Article  CAS  PubMed  Google Scholar 

  13. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  CAS  PubMed  Google Scholar 

  14. Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol 33:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maes M, Cogliati B, Crespo YS et al (2015) Roles of connexins and pannexins in digestive homeostasis. Cell Mol Life Sci 72:2809–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinken M, Henkens T, De Rop E et al (2008) Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 47:1077–1088

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Crespo YS, Willebrords J et al (2015) Connexin and pannexin signaling in gastrointestinal and liver disease. Transl Res 166:332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  20. Bustin SA, Beaulieu JF, Huggett J et al (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  21. Micke P, Ohshima M, Tahmasebpoor S et al (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86:202–211

    Article  CAS  PubMed  Google Scholar 

  22. Huggett J, Dheda K, Bustin S et al (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  CAS  PubMed  Google Scholar 

  23. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 RESEARCH0034

    Google Scholar 

  24. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  25. Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  26. Hellemans J, Vandesompele J (2014) Selection of reliable reference genes for RT-qPCR analysis. Methods Mol Biol 1160:19–26

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  28. Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  Google Scholar 

  29. Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17:8543–8551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  31. Li P, Kupfer KC, Davies CJ et al (1997) PRIMO: a primer design program that applies base quality statistics for automated large-scale DNA sequencing. Genomics 40:476–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the grants of Agency for Innovation by Science and Technology in Flanders (IWT grant 131003), the University Hospital of the Vrije Universiteit Brussel-Belgium (Willy Gepts Fonds UZ-VUB), the Fund for Scientific Research-Flanders (FWO grants G009514N and G010214N), the European Research Council (ERC Starting Grant 335476), the University of São Paulo-Brazil, and the Foundation for Research Support of the State of São Paulo (FAPESP SPEC grant 2013/50420-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Maes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maes, M., Willebrords, J., Crespo Yanguas, S., Cogliati, B., Vinken, M. (2016). Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction. In: Vinken, M., Johnstone, S. (eds) Gap Junction Protocols. Methods in Molecular Biology, vol 1437. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3664-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3664-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3662-5

  • Online ISBN: 978-1-4939-3664-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics