Skip to main content

Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Therapeutic monoclonal antibodies are widely recognized to be a most promising means to treat an increasing number of human diseases, including cancers and autoimmunity. To a large extent, the efficacy of monoclonal antibody treatment is because IgG antibodies have greatly extended persistence in vivo. However, conventional rodent models do not mirror human antibody pharmacokinetics. The key molecule responsible for the extended persistence antibodies is the major histocompatibility complex class I family Fc receptor, FcRn. We describe human FcRn transgenic mouse models and how they can be exploited productively for the preclinical pharmacokinetic evaluation of therapeutic antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnet FM, Freeman M, Jackson AV, Lush D (1941) The production of antibodies. Macmillan and Company Limited, Melbourne

    Google Scholar 

  2. Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  CAS  PubMed  Google Scholar 

  3. Ahouse JJ, Hagerman CL, Mittal P, Gilbert DJ, Copeland NG, Jenkins NA et al (1993) Mouse MHC class I-like Fc receptor encoded outside the MHC. J Immunol 151:6076–6088

    CAS  PubMed  Google Scholar 

  4. Raghavan M, Gastinel LN, Bjorkman PJ (1993) The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32:8654–8660

    Article  CAS  PubMed  Google Scholar 

  5. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ (1994) Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 372:336–343

    Article  CAS  PubMed  Google Scholar 

  6. Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383

    Article  CAS  PubMed  Google Scholar 

  7. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  CAS  PubMed  Google Scholar 

  8. Ghetie V, Ward ES (2002) Transcytosis and catabolism of antibody. Immunol Res 25:97–113

    Article  CAS  PubMed  Google Scholar 

  9. Ghetie V, Ward ES (1997) FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol Today 18:592–598

    Article  CAS  PubMed  Google Scholar 

  10. http://antibodysociety.org/news/approved_mabs.php

  11. Deckert PM (2009) Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targets 10:158–175

    Article  CAS  PubMed  Google Scholar 

  12. Jarvis B, Faulds D (1999) Etanercept: a review of its use in rheumatoid arthritis. Drugs 57:945–966

    Article  CAS  PubMed  Google Scholar 

  13. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559

    Article  CAS  PubMed  Google Scholar 

  14. Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470

    Article  CAS  PubMed  Google Scholar 

  15. Liu XY, Pop LM, Vitetta ES (2008) Engineering therapeutic monoclonal antibodies. Immunol Rev 222:9–27

    Article  CAS  PubMed  Google Scholar 

  16. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC et al (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18:1759–1769

    Article  CAS  PubMed  Google Scholar 

  17. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N et al (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC et al (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein C, Kling L, Proetzel G, Roopenian DC, de Angelis MH, Wolf E, Rathkolb B (2012) Clinical chemistry of human FcRn transgenic mice. Mamm Genome 23:259–269

    Article  CAS  PubMed  Google Scholar 

  20. Tam SH, McCarthy SG, Brosnan K, Goldberg KM, Scallon BJ (2013) Correlations between pharmacokinetics of IgG antibodies in primates vs. FcRn-transgenic mice reveal a rodent model with predictive capabilities. MAbs 5:397–405

    Article  PubMed  PubMed Central  Google Scholar 

  21. Proetzel G, Roopenian DC (2014) Humanized FcRn mouse models for evaluating pharmacokinetics of human IgG antibodies. Methods 65:148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Proetzel G, Wiles MV, Roopenian DC (2014) Genetically engineered humanized mouse models for preclinical antibody studies. BioDrugs 28:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S (2006) Perspective—FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27:343–348

    Article  CAS  PubMed  Google Scholar 

  24. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A et al (2002) Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther 303:540–548

    Article  CAS  PubMed  Google Scholar 

  25. Roopenian DC, Low BE, Christianson GJ, Proetzel G, Sproule TJ, Wiles MV (2015) A humanized mouse model to study human albumin metabolism and pharmacokinetics of albumin-based drugs. MAbs 7:344–351

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28:157–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derry C. Roopenian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roopenian, D.C., Christianson, G.J., Proetzel, G., Sproule, T.J. (2016). Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics