Skip to main content

Mouse Models for Studying Depression-Like States and Antidepressant Drugs

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Abstract

Depression is a common psychiatric disorder, with diverse symptoms and high comorbidity with other brain dysfunctions. Due to this complexity, little is known about the neural and genetic mechanisms involved in depression pathogenesis. In a large proportion of patients, current antidepressant treatments are often ineffective and/or have undesirable side effects, fueling the search for more effective drugs. Animal models mimicking various symptoms of depression are indispensable in studying the biological mechanisms of this disease. Here, we summarize several popular methods for assessing depression-like symptoms in mice, and their utility in screening antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong ML, Licinio J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151

    Article  CAS  PubMed  Google Scholar 

  2. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  3. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  4. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357

    Article  CAS  PubMed  Google Scholar 

  5. Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7

    Article  PubMed  Google Scholar 

  6. Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200

    Article  CAS  PubMed  Google Scholar 

  7. Malatynska E, Rapp R, Harrawood D, Tunnicliff G (2005) Submissive behavior in mice as a test for antidepressant drug activity. Pharmacol Biochem Behav 82:306–313

    Article  CAS  PubMed  Google Scholar 

  8. Kalueff AV, Laporte JL, Murphy DL, Sufka K (2008) Hybridizing behavioral models: a possible solution to some problems in neurophenotyping research? Prog Neuropsychopharmacol Biol Psychiatry 32:1172–1178

    Article  PubMed  Google Scholar 

  9. Kalueff AV, Murphy DL (2007) The Importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plast 2007:52087

    PubMed  PubMed Central  Google Scholar 

  10. Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Kupfer DJ, Bloom F (eds) Psychopharmacology the fourth generation of progress. Raven Press, New York, pp 787–798

    Google Scholar 

  11. Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515–523

    Article  PubMed  Google Scholar 

  12. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  13. Crowley JJ, Jones MD, O'Leary OF, Lucki I (2004) Automated tests for measuring the effects of antidepressants in mice. Pharmacol Biochem Behav 78:269–274

    Article  CAS  PubMed  Google Scholar 

  14. Juszczak GR, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P et al (2006) The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacol Biochem Behav 85:332–338

    Article  CAS  PubMed  Google Scholar 

  15. Jackson-Laboratory (2008) Mouse genome informatics. http://www.informatics.jax.org/

  16. Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25:219–233

    Article  CAS  PubMed  Google Scholar 

  17. Deacon RM (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1:936–946

    Article  PubMed  Google Scholar 

  18. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  19. Kos T, Legutko B, Danysz W, Samoriski G, Popik P (2006) Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in mice. J Pharmacol Exp Ther 318:1128–1136.

    Google Scholar 

  20. Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192

    Article  CAS  PubMed  Google Scholar 

  21. Bourin M, Chenu F, Ripoll N, David DJ (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164:266–269

    Article  CAS  PubMed  Google Scholar 

  22. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS et al (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482

    Article  CAS  PubMed  Google Scholar 

  23. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017

    Article  PubMed  Google Scholar 

  24. Jayatissa MN, Bisgaard CF, West MJ, Wiborg O (2008) The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 54:530–541

    Article  CAS  PubMed  Google Scholar 

  25. Xu Q, Yi LT, Pan Y, Wang X, Li YC et al (2008) Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 32:715–725

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Z, Wang W, Guo H, Zhou D (2008) Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res 194:108–113.

    Google Scholar 

  27. Perona MT, Waters S, Hall FS, Sora I, Lesch KP et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo DD, An SC, Xhang X (2008) Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Res Bull 77:8–12

    Article  CAS  PubMed  Google Scholar 

  29. Piato AL, Detanico BC, Jesus JF, Lhullier FL, Nunes DS et al (2008) Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol 118:300–304

    Article  PubMed  Google Scholar 

  30. Yalcin I, Aksu F, Belzung C (2005) Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 514:165–174

    Article  CAS  PubMed  Google Scholar 

  31. Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C (2007) Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 18:623–631

    Article  CAS  PubMed  Google Scholar 

  32. Ducottet C, Griebel G, Belzung C (2003) Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:6

    Article  Google Scholar 

  33. Zhang L, Barrett JE (1990) Interactions of corticotropin-releasing factor with antidepressant and anxiolytic drugs: behavioral studies with pigeons. Biol Psychiatry 27:953–967

    Article  CAS  PubMed  Google Scholar 

  34. Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A (2006) Swimming behaviour and post-swimming activity in vitamin D receptor knockout mice. Brain Res Bull 69:74–78

    Article  CAS  PubMed  Google Scholar 

  35. Harkin A, Houlihan DD, Kelly JP (2002) Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J Psychopharmacol 16:115–123

    Article  CAS  PubMed  Google Scholar 

  36. Willner P, Moreau JL, Nielsen CK, Papp M, Sluzewska A (1996) Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav 60:129–134

    Article  CAS  PubMed  Google Scholar 

  37. Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146

    Article  PubMed  Google Scholar 

  38. Mineur YS, Prasol DJ, Belzung C, Crusio WE (2003) Agonistic behavior and unpredictable chronic mild stress in mice. Behav Genet 33:513–519

    Article  PubMed  Google Scholar 

  39. Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34

    Article  CAS  PubMed  Google Scholar 

  40. Kalueff AV, Keisala T, Minasyan A, Kuuslahti M, Miettinen S et al (2006) Behavioural anomalies in mice evoked by “Tokyo” disruption of the vitamin D receptor gene. Neurosci Res 54:254–260

    Article  CAS  PubMed  Google Scholar 

  41. Garner JP, Weisker SM, Dufour B, Mench JA (2004) Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med 54:216–224

    CAS  PubMed  Google Scholar 

  42. Kalueff AV, Minasyan A, Keisala T, Shah ZH, Tuohimaa P (2006) Hair barbering in mice: implications for neurobehavioural research. Behav Processes 71:8–15

    Article  CAS  PubMed  Google Scholar 

  43. Sarna JR, Dyck RH, Whishaw IQ (2000) The Dalila effect: C57BL/6 mice barber whiskers by plucking. Behav Brain Res 108:39–45

    Article  CAS  PubMed  Google Scholar 

  44. Garner JP, Dufour B, Gregg LE, Weisker SM, Mench JA (2004) Social and husbandry factors affecting the prevalence and severity of barbering (“whisker-trimming”) by laboratory mice. Appl Anim Lab Sci 89:263–282

    Article  Google Scholar 

  45. Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  46. Mayorga AJ, Lucki I (2001) Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl) 155:110–112

    Article  CAS  Google Scholar 

  47. Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183:257–264

    Article  CAS  Google Scholar 

  48. Jones SM, Jones TA, Johnson KR, Yu H, Erway LC et al (2006) A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res 1091:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rauskolb S (2008) Brain-derived neurotrophic factor: generation and characterization of adult mice lacking BDNF in the adult brain, p 91. University of Basel, Basel, Germany

    Google Scholar 

  50. Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L, Crawley JN et al (1999) Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem 6:521–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NARSAD YI Award to AVK, and by Stress Physiology and Research Center (SPaRC) of Georgetown University Medical School. AVK is the President of the International Stress and Behavior Society (ISBS, www.stressandbehavior.com). He is supported by Guangdong Ocean University, St. Petersburg State University (internal grant 1.38.201.2014) and Ural Federal University (Government of Russian Federation Act 211, contract 02-A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bergner, C.L. et al. (2016). Mouse Models for Studying Depression-Like States and Antidepressant Drugs. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics