Skip to main content

Murine Model for Colitis-Associated Cancer of the Colon

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), significantly increases the risk for development of colorectal cancer. Specifically, dysplasia and cancer associated with IBD (colitis-associated cancer or CAC) develop as a result of repeated cycles of injury and healing in the intestinal epithelium. Animal models are utilized to examine the mechanisms of CAC, the role of epithelial and immune cells in this process, as well as the development of novel therapeutic targets. These models typically begin with the administration of a carcinogenic compound, and inflammation is caused by repeated cycles of colitis-inducing agents. This review describes a common CAC model that utilizes the pro-carcinogenic compound azoxymethane (AOM) followed by dextran sulfate sodium (DSS) which induces the inflammatory insult.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Elinav E et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  2. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Francescone R, Hou V, Grivennikov SI (2015) Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis 21(2):409–418

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Robertis M et al (2011) The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tanaka T (2012) Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int J Inflam 2012:658786

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okayasu I et al (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39(1):87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka T et al (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94(11):965–973

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka T (2009) Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog 8:5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kanneganti M, Mino-Kenudson M, Mizoguchi E (2011) Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol 2011:342637

    Article  PubMed  PubMed Central  Google Scholar 

  10. Josse C et al (2014) Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 306(3):G229–G243

    Article  CAS  PubMed  Google Scholar 

  11. Greten FR et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296

    Article  CAS  PubMed  Google Scholar 

  12. Paradisi A et al (2009) Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A 106(40):17146–17151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popivanova BK et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118(2):560–570

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Grivennikov S et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zackular JP et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–13

    Google Scholar 

  16. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  CAS  PubMed  Google Scholar 

  17. Suzui M et al (1995) No involvement of Ki-ras or p53 gene mutations in colitis-associated rat colon tumors induced by 1-hydroxyanthraquinone and methylazoxymethanol acetate. Mol Carcinog 12(4):193–197

    Article  CAS  PubMed  Google Scholar 

  18. Erdman SH et al (1997) Assessment of mutations in Ki-ras and p53 in colon cancers from azoxymethane- and dimethylhydrazine-treated rats. Mol Carcinog 19(2):137–144

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi M et al (2000) Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21(7):1319–1327

    Article  CAS  PubMed  Google Scholar 

  20. Cooper HS et al (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2):238–249

    CAS  PubMed  Google Scholar 

  21. Kullmann F et al (2001) Clinical and histopathological features of dextran sulfate sodium induced acute and chronic colitis associated with dysplasia in rats. Int J Colorectal Dis 16(4):238–246

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki R et al (2006) Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27(1):162–169

    Article  CAS  PubMed  Google Scholar 

  23. Kohno H et al (2005) Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci 96(2):69–76

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka T et al (2000) Colitis-related rat colon carcinogenesis induced by 1-hydroxy-anthraquinone and methylazoxymethanol acetate (review). Oncol Rep 7(3):501–508

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Veterans Affairs Merit Award (LMO), as well as NIH Grants CA084197 and DK052230 (VWY), and CA172517 and CA097132 (YAH).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Snider, A.J., Bialkowska, A.B., Ghaleb, A.M., Yang, V.W., Obeid, L.M., Hannun, Y.A. (2016). Murine Model for Colitis-Associated Cancer of the Colon. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics