Skip to main content

Cholesterol Absorption and Metabolism

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hui DY, Howles PN (2005) Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin Cell Dev Biol 16:183–192

    Article  CAS  PubMed  Google Scholar 

  2. Levy E, Spahis S, Sinnett D, Peretti N, Maupas-Schwalm F et al (2007) Intestinal cholesterol transport proteins: an update and beyond. Curr Opin Lipidol 18:310–318

    Article  CAS  PubMed  Google Scholar 

  3. Hui DY, Labonté ED, Howles PN (2008) Development and physiological regulation of intestinal lipid absorption III. Intestinal transporters and cholesterol absorption. Am J Physiol Gastrointest Liver Physiol 294:839–843

    Article  Google Scholar 

  4. Westergaard H, Dietschy JM (1976) The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cells. J Clin Invest 58:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thurnhofer H, Hauser H (1990) Uptake of cholesterol by small intestinal brush border membrane is protein-mediated. Biochemistry 29:2142–2148

    Article  CAS  PubMed  Google Scholar 

  6. Borja CR, Vahouny GV, Treadwell CR (1964) Role of bile and pancreatic juice in cholesterol absorption and esterification. Am J Physiol 206:223–228

    CAS  PubMed  Google Scholar 

  7. Gallo LL, Clark SB, Myers S, Vahouny GV (1984) Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyl transferase. J Lipid Res 25:604–612

    CAS  PubMed  Google Scholar 

  8. Fernandez E, Borgström B (1989) Effects of tetrahydrolipstatin, a lipase inhibitor, on absorption of fat from the intestine of the rat. Biochim Biophys Acta 1001:249–255

    Article  CAS  PubMed  Google Scholar 

  9. McKean ML, Commons TJ, Berens MS, Hsu PL, Ackerman DM et al (1992) Effect of inhibitors of pancreatic cholesterol ester hydrolase (PCEH) on 14C-cholesterol absorption in animal models. FASEB J 6:A1388

    Google Scholar 

  10. Krause BR, Sliskovic DR, Anderson M, Homan R (1998) Lipid-lowering effects of WAY-121,898, an inhibitor of pancreatic cholesteryl ester hydrolase. Lipids 33:489–498

    Article  CAS  PubMed  Google Scholar 

  11. Howles PN, Carter CP, Hui DY (1996) Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J Biol Chem 271:7196–7202

    Article  CAS  PubMed  Google Scholar 

  12. Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH et al (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149

    Article  CAS  PubMed  Google Scholar 

  13. Camarota LM, Chapman JM, Hui DY, Howles PN (2004) Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of choelsteryl esters from HDL3. J Biol Chem 279:27599–27606

    Article  CAS  PubMed  Google Scholar 

  14. Chaikoff IL, Bloom B, Siperstein MD, Kiyasu JY, Reinhardt WO et al (1952) C14-cholesterol I: lymphatic transport of absorbed cholesterol-4-C14. J Biol Chem 194:407–412

    CAS  PubMed  Google Scholar 

  15. Heider JG, Pickens CE, Kelly LA (1983) Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57–118 in the rabbit. J Lipid Res 24:1127–1134

    CAS  PubMed  Google Scholar 

  16. Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25:148–159

    CAS  PubMed  Google Scholar 

  17. Gallo LL, Wadsworth JA, Vahouny GV (1987) Normal cholesterol absorption in rats deficient in intestinal acyl coenzyme A:cholesterol acyltransferase activity. J Lipid Res 28:381–387

    CAS  PubMed  Google Scholar 

  18. Buhman KK, Accad M, Novak S, Choi RS, Wong JS et al (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6:1341–1347

    Article  CAS  PubMed  Google Scholar 

  19. Yagu H, Kitamine T, Osuga J, Tozawa R, Chen Z et al (2000) Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 275:21324–21330

    Article  Google Scholar 

  20. Leon C, Hill JS, Wasan KM (2005) Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm Res 22:1578–1588

    Article  CAS  PubMed  Google Scholar 

  21. Rudel LL, Lee RG, Parini P (2005) ACAT2 is a target for treatment of coronary heart disease associated with hyperchoelsterolemia. Arterioscler Thromb Vasc Biol 25:1112–1118

    Article  CAS  PubMed  Google Scholar 

  22. Lada AT, Davis M, Kent C, Chapman J, Tomoda H et al (2004) Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J Lipid Res 45:378–386

    Article  CAS  PubMed  Google Scholar 

  23. VanHeek M, France CF, Compton DS, McLeon RL, Yumibe NP et al (1997) In vivo metabolism-based discovery of a potent absorption cholesterol inhibitor, SCH58235, in the rat, and rhesus monkey through the identification of the active metabolites of SCH48461. J Pharmacol Exp Therap 283:157–163

    CAS  Google Scholar 

  24. Altmann SW, Davis HR, Zhu L, Yao X, Hoos LM et al (2004) Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Calvo M, Lisnock HG, Bull BE, Hawes DA, Burnett MP et al (2005) The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc Natl Acad Sci U S A 102:8132–8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ziajka PE, Reis M, Kreul S, King H (2004) Initial low-density lipoprotein response to statin therapy predicts subsequent low-density lipoprotein response to the addition of ezetimibe. Am J Cardiol 93:779–780

    Article  CAS  PubMed  Google Scholar 

  27. Richmond BL, Boileau AC, Zheng S, Huggins KW, Gramholm NA et al (2001) Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120:1193–1202

    Article  CAS  PubMed  Google Scholar 

  28. Huggins KW, Boileau AC, Hui DY (2002) Protection against diet-induced obesity and insulin resistance in group 1B PLA2 deficient mice. Am J Physiol Endocrinol Metab 283:E994–E1001

    Article  CAS  PubMed  Google Scholar 

  29. Homan R, Hamelehle KL (1998) Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. J Lipid Res 39:1197–1209

    CAS  PubMed  Google Scholar 

  30. Huggins KW, Camarota LM, Howles PN, Hui DY (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem 278:42899–42905

    Article  CAS  PubMed  Google Scholar 

  31. Mittendorf B, Ostlund RE, Patterson BW, Klein S (2001) Orlistat inhibits dietary cholesterol absorption. Obes Res 9:599–604

    Article  Google Scholar 

  32. Drew BS, Dixon AF, Drew JB (2007) Obesity management: update on orlistat. Vasc Health Risk Manag 3:817–821

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Quintão E, Grundy SM, Ahrens EH (1971) An evaluation of four methods for measuring cholesterol absorption by the intestine in man. J Lipid Res 12:221–232

    PubMed  Google Scholar 

  34. Sanders DJ, Minter HJ, Howes D, Hepburn PA (2000) The safety evaluation of phytosterol esters. Part 6. The comparative absorption and tissue distribution of phytosterols in the rat. Food Chem Toxicol 38:485–491

    Article  CAS  PubMed  Google Scholar 

  35. Igel M, Giesa U, Lutjohann D, von Bergmann K (2003) Comparison of the intestinal uptake of cholesterol, plant sterols, and stanols in mice. J Lipid Res 44:533–538

    Article  CAS  PubMed  Google Scholar 

  36. Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, Revkin JH, Grobbee DE, Riley WA, Shear CL, Duggan WT, Bots ML, RADIANCE 1 investigators (2007) Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 356:1620–1630

    Article  CAS  PubMed  Google Scholar 

  37. Forrester JS, Makkar R, Shah PK (2005) Increasing high-density lipoprotein cholesterol in dyslipidemia by cholesteryl ester transfer protein inhibition. Circulation 111:1847–1854

    Article  CAS  PubMed  Google Scholar 

  38. Tchoua U, D'Souza W, Mukhamedova N, Blum D, Niesor E, Mizrahi J, Maugeais C, Sviridov D (2008) The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovasc Res 77:732–739

    Article  CAS  PubMed  Google Scholar 

  39. Post SM, de Crom R, van Haperen R, van Tol A, Princen HM (2003) Increased fecal bile acid excretion in transgenic mice with elevated expression of human phospholipid transfer protein. Arterioscler Thromb Vasc Biol 23:892–897

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YZ, Zanotti I, Reilly MP, Glick JM, Rothblat GH et al (2003) Overexpression of apolipoprotein A-I promotes reverse cholesterol transport from macrophages to feces in vivo. Circulation 108:661–663

    Article  CAS  PubMed  Google Scholar 

  41. Carter CP, Howles PN, Hui DY (1997) Genetic variation in cholesterol absorption efficiency among inbred strains of mice. J Nutr 127:1344–1348

    CAS  PubMed  Google Scholar 

  42. Zilversmit DB, Hughes LB (1974) Validation of a dual-isotope plasma ratio for measurement of cholesterol absorption in rats. J Lipid Res 15:465–473

    CAS  PubMed  Google Scholar 

  43. Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT (2005) Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J Lipid Res 46:2023–2028

    Article  CAS  PubMed  Google Scholar 

  44. Jandacek RJ, Heubi JE, Tso P (2004) A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 127:139–144

    Article  CAS  PubMed  Google Scholar 

  45. LaBonté ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE et al (2008) Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1 −/− mice. Am J Physiol Gastrointest Liver Physiol 295:G776–G783

    Article  PubMed  PubMed Central  Google Scholar 

  46. Osono Y, Woollett LA, Herz J, Dietschy JM (1995) Role of the low density lipoprotein receptor in the flux of cholesterol across the tissues of the mouse. J Clin Invest 95:1124–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01HL078900 and R01DK077170-ARRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N. Howles Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Howles, P.N. (2016). Cholesterol Absorption and Metabolism. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics