Skip to main content

Review on Pharmacogenetics and Pharmacogenomics Applied to the Study of Asthma

  • Protocol
  • First Online:
Molecular Genetics of Asthma

Abstract

Nearly one-half of asthmatic patients do not respond to the most common therapies. Evidence suggests that genetic factors may be involved in the heterogeneity in therapeutic response and adverse events to asthma therapies. We focus on the three major classes of asthma medication: β-adrenergic receptor agonist, inhaled corticosteroids, and leukotriene modifiers. Pharmacogenetics and pharmacogenomics studies have identified several candidate genes associated with drug response.

In this chapter, the main pharmacogenetic and pharmacogenomic studies in addition to the future perspectives in personalized medicine will be reviewed. The ideal treatment of asthma would be a tailored approach to health care in which adverse effects are minimized and the therapeutic benefit for an individual asthmatic is maximized leading to a more cost-effective care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore WC, Meyers DA, Wenzel SE et al (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181(4):315–323

    Article  PubMed  Google Scholar 

  2. Miranda C, Busacker A, Balzar S et al (2004) Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 113(1):101–108

    Article  PubMed  Google Scholar 

  3. Fanta CH (2009) Asthma. N Engl J Med 360(10):1002–1014

    Article  CAS  PubMed  Google Scholar 

  4. Masoli M, Fabian D, Holt S et al (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59(5):469–478

    Article  PubMed  Google Scholar 

  5. Hawkins GA, Peters SP (2008) Pharmacogenetics of asthma. Methods Mol Biol 448:359–378

    Article  CAS  PubMed  Google Scholar 

  6. García-Sánchez A, Isidoro-García M, García-Solaesa V et al (2015) Genome-wide association studies (GWAS) and their importance in asthma. Allergol Immunopathol (Madr) 43:601–608. doi:10.1016/j.aller.2014.07.004

    Article  Google Scholar 

  7. Lorente F, Isidoro-Garcia M, Macias E et al (2010) Do genetic factors determine atopy or allergy? Allergol Immunopathol (Madr) 38(2):53–55

    Article  CAS  Google Scholar 

  8. Vogel FVF (1959) Modern problems of human genetics. Ergeb Inn Med Kinderheilkd 12:52–125

    Google Scholar 

  9. Wang L, McLeod HL, Weinshilboum RM (2011) Genomics and drug response. N Engl J Med 364(12):1144–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis JS, Weiss ST, Tantisira KG (2015) Asthma pharmacogenomics: 2015 update. Curr Allergy Asthma Rep 15(7):42

    Article  PubMed  Google Scholar 

  11. Patnala R, Clements J, Batra J (2013) Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 14:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon JM, Goate AM (2000) The candidate gene approach. Alcohol Res Health 24(3):164–168

    CAS  Google Scholar 

  13. Karczewski KJ, Daneshjou R, Altman RB (2012) Chapter 7: pharmacogenomics. PLoS Comput Biol 8(12):e1002817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev 242(1):10–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Himes BE, Jiang X, Wagner P et al (2014) RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One 9(6):e99625

    Article  PubMed  PubMed Central  Google Scholar 

  16. Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48(3):265–276

    Article  CAS  PubMed  Google Scholar 

  17. Ortega VE, Meyers DA, Bleecker ER (2015) Asthma pharmacogenetics and the development of genetic profiles for personalized medicine. Pharmgenomics Pers Med 8:9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Litonjua AA, Gong L, Duan QL et al (2010) Very important pharmacogene summary ADRB2. Pharmacogenet Genomics 20(1):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobilka BK, Dixon RA, Frielle T et al (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A 84(1):46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weiss ST, Litonjua AA, Lange C et al (2006) Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J 6(5):311–326

    CAS  PubMed  Google Scholar 

  21. Reihsaus E, Innis M, MacIntyre N et al (1993) Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8(3):334–339

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell TJ, Ameyaw MM, Pritchard S et al (2005) Beta-2 adrenergic receptor genotypes and haplotypes in different ethnic groups. Int J Mol Med 16(4):573–580

    CAS  PubMed  Google Scholar 

  23. Lima JJ, Thomason DB, Mohamed MH et al (1999) Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 65(5):519–525

    Article  CAS  PubMed  Google Scholar 

  24. Choudhry S, Ung N, Avila PC et al (2005) Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am J Respir Crit Care Med 171(6):563–570

    Article  PubMed  Google Scholar 

  25. Woszczek G, Borowiec M, Ptasinska A et al (2005) Beta2-ADR haplotypes/polymorphisms associate with bronchodilator response and total IgE in grass allergy. Allergy 60(11):1412–1417

    Article  CAS  PubMed  Google Scholar 

  26. Martinez FD, Graves PE, Baldini M et al (1997) Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest 100(12):3184–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carroll CL, Stoltz P, Schramm CM et al (2009) Beta2-adrenergic receptor polymorphisms affect response to treatment in children with severe asthma exacerbations. Chest 135(5):1186–1192

    Article  CAS  PubMed  Google Scholar 

  28. Israel E, Drazen JM, Liggett SB et al (2000) The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 162(1):75–80

    Article  CAS  PubMed  Google Scholar 

  29. Israel E, Chinchilli VM, Ford JG et al (2004) Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364(9444):1505–1512

    Article  CAS  PubMed  Google Scholar 

  30. Nelson HS, Weiss ST, Bleecker ER et al (2006) The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 129(1):15–26

    Article  CAS  PubMed  Google Scholar 

  31. Wechsler ME, Lehman E, Lazarus SC et al (2006) Beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med 173(5):519–526

    Article  CAS  PubMed  Google Scholar 

  32. Wechsler ME, Kunselman SJ, Chinchilli VM et al (2009) Effect of beta2-adrenergic receptor polymorphism on response to long acting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomized, placebo-controlled, crossover trial. Lancet 374(9703):1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bleecker ER et al (2010) Beta2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate. Am J Respir Crit Care Med 181(7):676–687

    Article  CAS  PubMed  Google Scholar 

  34. Lipworth BJ, Basu K, Donald HP et al (2013) Tailored second-line therapy in asthmatic children with the Arg(16) genotype. Clin Sci (Lond) 124(8):521–528

    Article  CAS  Google Scholar 

  35. Zuurhout MJ, Vijverberg SJ, Raaijmakers JA et al (2013) Arg16 ADRB2 genotype increases the risk of asthma exacerbation in children with a reported use of long-acting beta2-agonists: results of the PACMAN cohort. Pharmacogenomics 14(16):1965–1971

    Article  CAS  PubMed  Google Scholar 

  36. Green SA, Cole G, Jacinto M et al (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268(31):23116–23121

    CAS  PubMed  Google Scholar 

  37. Ortega VE, Hawkins GA, Moore WC et al (2014) Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during long acting beta agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med 2(3):204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tantisira KG, Small KM, Litonjua AA et al (2005) Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between beta-agonist and corticosteroid pathways. Hum Mol Genet 14(12):1671–1677

    Article  CAS  PubMed  Google Scholar 

  39. Kim SH, Ye YM, Lee HY et al (2011) Combined pharmacogenetic effect of ADCY9 and ADRB2 gene polymorphisms on the bronchodilator response to inhaled combination therapy. J Clin Pharm Ther 36(3):399–405

    Article  CAS  PubMed  Google Scholar 

  40. Drake KA, Torgerson DG, Gignoux CR et al (2014) A genome-wide association study of bronchodilator response in Latinos implicates rare variants. J Allergy Clin Immunol 133(2):370–378

    Article  PubMed  Google Scholar 

  41. Que LG, Yang Z, Stamler JS et al (2009) S-nitrosoglutathione reductase: an important regulator in human asthma. Am J Respir Crit Care Med 180(3):226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choudhry S, Que LG, Yang Z et al (2010) GSNO reductase and beta2-adrenergic receptor gene-gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet Genomics 20(6):351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Litonjua AA, Lasky-Su J, Scheiter K et al (2008) ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am J Respir Crit Care Med 178(7):688–694

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duan QL, Gaume BR, Hawkins GA et al (2011) Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. Am J Respir Crit Care Med 183(4):449–454

    Article  CAS  PubMed  Google Scholar 

  45. Vonk JM, Postma DS, Maarsingh H et al (2010) Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics 20(3):179–186

    Article  CAS  PubMed  Google Scholar 

  46. Iordanidou M, Paraskakis E, Tavridu A et al (2012) G894T polymorphism of eNOS gene is a predictor of response to combination of inhaled corticosteroids with long-lasting beta2-agonists in asthmatic children. Pharmacogenomics 13(12):1363–1372

    Article  CAS  PubMed  Google Scholar 

  47. Himes BE, Jiang X, Hu R et al (2012) Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet 8(7):e1002824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Israel E, Lasky-Su J, Markezich A et al (2015) Genome-wide association study of short-acting beta2-agonists. A novel genome-wide significant locus on chromosome 2 near ASB3. Am J Respir Crit Care Med 191(5):530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duan QL, Laskky-Su J, Himes BE et al (2014) A genome-wide association study of bronchodilator response in asthmatics. Pharmacogenomics J 14(1):41–47

    Article  CAS  PubMed  Google Scholar 

  50. Padhukasahasram BK, Yang JJ, Levin AM et al (2014) Gene-based association identifies SPATA13-AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups. Pharmacogenomics J 14(4):365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ortega VE, Bleecker ER (2012) The pharmacogenetics of asthma and the road to personalized medicine. Pulmão RJ 21(2):41–52

    Google Scholar 

  52. Lima JJ, Blake KV, Tantisira KG et al (2009) Pharmacogenetics of asthma. Curr Opin Pulm Med 15(1):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huizenga NA, Koper JW, De Lange P et al (1998) A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 83(1):144–151

    CAS  PubMed  Google Scholar 

  54. Tantisira KG, Lake S, Silverman ES (2004) Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet 13(13):1353–1359

    Article  CAS  PubMed  Google Scholar 

  55. Tantisira KG, Hwang ES, Raby BA (2004) TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci U S A 101(52):18099–18104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye YM, Lee HY, Kim SH et al (2009) Pharmacogenetic study of the effects of NK2R G231E G > A and TBX21 H33Q C > G polymorphisms on asthma control with inhaled corticosteroid treatment. J Clin Pharm Ther 34(6):693–701

    Article  CAS  PubMed  Google Scholar 

  57. Tantisira KG, Silverman ES, Mariani TJ et al (2007) FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol 120(6):1285–1291

    Article  CAS  PubMed  Google Scholar 

  58. Tse SM, Tantisira K, Weiss ST (2011) The pharmacogenetics and pharmacogenomics of asthma therapy. Pharmacogenomics J 11(6):383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maitland-van der Zee AH, Raaijmakers JA (2012) Variation at GLCCI1 and FCER2: one step closer to personalized asthma treatment. Pharmacogenomics 13(3):243–245

    Article  CAS  PubMed  Google Scholar 

  60. Hawkins GA, Lazarus R, Smith RS et al (2009) The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol 123(6):1376–1383.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tantisira KG, Lasky-Su J, Harada M et al (2011) Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med 365(13):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tantisira KG, Damask A, Szefler SJ et al (2012) Genome-wide association identifies the T gene as a novel asthma pharmacogenetic locus. Am J Respir Crit Care Med 185(12):1286–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park HW, Dahlin A, Tse S et al (2014) Genetic predictors associated with improvement of asthma symptoms in response to inhaled corticosteroids. J Allergy Clin Immunol 133(3):664–669.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perin P, Potocnik U (2014) Polymorphisms in recent GWA identified asthma genes CA10, SGK493, and CTNNA3 are associated with disease severity and treatment response in childhood asthma. Immunogenetics 66(3):143–151

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Tong C, Wang Z et al (2015) Pharmacodynamic genome-wide association study identifies new responsive loci for glucocorticoid intervention in asthma. Pharmacogenomics J 15(5):422–429

    Article  CAS  PubMed  Google Scholar 

  66. Qiu W, Rogers AJ, Damask A et al (2014) Pharmacogenomics: novel loci identification via integrating gene differential analysis and eQTL analysis. Hum Mol Genet 23(18):5017–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lima JJ, Zhang S, Grant A et al (2006) Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med 173(4):379–385

    Article  CAS  PubMed  Google Scholar 

  68. Telleria JJ, Blanco-Quiros A, Varillas D et al (2008) ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med 102(6):857–861

    Article  PubMed  Google Scholar 

  69. Fowler SJ, Hall IP, Wilson AM et al (2002) 5-Lipoxygenase polymorphism and in-vivo response to leukotriene receptor antagonists. Eur J Clin Pharmacol 58(3):187–190

    Article  CAS  PubMed  Google Scholar 

  70. Mougey E, Lang JE, Allayee H (2013) ALOX5 polymorphism associates with increased leukotriene production and reduced lung function and asthma control in children with poorly controlled asthma. Clin Exp Allergy 43(5):512–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klotsman M, York TP, Pillai SG et al (2007) Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics 17(3):189–196

    Article  CAS  PubMed  Google Scholar 

  72. Sanak M, Simon HU, Szczeklik A (1997) Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet 350(9091):1599–1600

    Article  CAS  PubMed  Google Scholar 

  73. Isidoro-Garcia M, Davila I, Moreno E et al (2005) Analysis of the leukotriene C4 synthase A-444C promoter polymorphism in a Spanish population. J Allergy Clin Immunol 115(1):206–207

    Article  PubMed  Google Scholar 

  74. Asano K, Shiomi T, Hasegawa N et al (2002) Leukotriene C4 synthase gene A(-444)C polymorphism and clinical response to a CYS-LT(1) antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 12(7):565–570

    Article  CAS  PubMed  Google Scholar 

  75. Tantisira KG, Lima J, Sylvia J et al (2009) 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics 19(3):244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mougey EB, Feng H, Castro M et al (2009) Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics 19(2):129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tapaninen T, Karonen T, Backman JT et al (2013) SLCO2B1 c.935G > A single nucleotide polymorphism has no effect on the pharmacokinetics of montelukast and aliskiren. Pharmacogenet Genomics 23(1):19–24

    Article  CAS  PubMed  Google Scholar 

  78. Kim KA, Lee HM, Joo HJ et al (2013) Effects of polymorphisms of the SLCO2B1 transporter gene on the pharmacokinetics of montelukast in humans. J Clin Pharmacol 53(11):1186–1193

    CAS  PubMed  Google Scholar 

  79. Dahlin A, Litonjua A, Irvin CG et al (2015) Genome-wide association study of leukotriene modifier response in asthma. Pharmacogenomics J. doi: 10.1038/tpj.2015.34

    Google Scholar 

  80. Dahlin A, Litonjua A, Lima JJ et al (2015) Genome-wide association study identifies novel pharmacogenomic loci for therapeutic response to montelukast in asthma. PLoS One 10(6):e0129385

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ortega VE, Meyers DA (2014) Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. J Allergy Clin Immunol 133(1):16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abecasis GR, Auto A, Brooks LD et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65

    Article  PubMed  Google Scholar 

  83. Sessa R, Hata A (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 3(2):315–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perry MM, Tsitsiou E, Austin PJ et al (2014) Role of non-coding RNAs in maintaining primary airway smooth muscle cells. Respir Res 15:58

    Article  PubMed  PubMed Central  Google Scholar 

  85. Booton R, Lindsay MA (2014) Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest 146(1):193–204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isidoro-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sánchez-Martín, A., García-Sánchez, A., Isidoro-García, M. (2016). Review on Pharmacogenetics and Pharmacogenomics Applied to the Study of Asthma. In: Isidoro García, M. (eds) Molecular Genetics of Asthma. Methods in Molecular Biology, vol 1434. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3652-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3652-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3650-2

  • Online ISBN: 978-1-4939-3652-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics