Skip to main content

Membrane Protein Production in the Yeast, S. cerevisiae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1432))

Abstract

The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca2+-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CCD:

Charge-coupled device

DoE:

Design of experiments

GFP:

Green fluorescent protein

GOI:

Gene of interest

GPCR:

G protein-coupled receptor

h:

Hour

LioAc:

Lithium acetate

PGAL1 :

GAL1 promoter

PEG:

Polyethylene glycol

s:

Second

T4L:

T4 lysozyme

References

  1. Darby RA, Cartwright SP, Dilworth MV, Bill RM (2012) Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol Biol 866:11–23. doi:10.1007/978-1-61779-770-5_2

    Article  CAS  PubMed  Google Scholar 

  2. Jidenko M, Nielsen RC, Sorensen TL, Moller JV, le Maire M, Nissen P, Jaxel C (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102(33):11687–11691. doi:10.1073/pnas.0503986102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903. doi:10.1126/science.1116269

    Google Scholar 

  4. Bill RM, von der Haar T (2015) Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects. Curr Opin Struct Biol 32:147–155. doi:10.1016/j.sbi.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bill RM (2014) Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 5:85. doi:10.3389/fmicb.2014.00085

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byrne B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17. doi:10.1016/j.sbi.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  7. Shiroishi M, Tsujimoto H, Makyio H, Asada H, Yurugi-Kobayashi T, Shimamura T, Murata T, Nomura N, Haga T, Iwata S, Kobayashi T (2012) Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae. Microb Cell Factories 11:78. doi:10.1186/1475-2859-11-78

    Article  CAS  Google Scholar 

  8. Shiroishi M, Kobayashi T, Ogasawara S, Tsujimoto H, Ikeda-Suno C, Iwata S, Shimamura T (2011) Production of the stable human histamine H(1) receptor in Pichia pastoris for structural determination. Methods 55(4):281–286. doi:10.1016/j.ymeth.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  9. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110(1):119–122. doi:0378-1119(92)90454-W

    Google Scholar 

  10. Drew D, Kim H (2012) Preparation of Saccharomyces cerevisiae expression plasmids. Methods Mol Biol 866:41–46. doi:10.1007/978-1-61779-770-5_4

    Article  CAS  PubMed  Google Scholar 

  11. Weiss HM, Haase W, Michel H, Reilander H (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett 377(3):451–456. doi: 10.1016/0014-5793(95)01389-X

    Google Scholar 

  12. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533. doi:10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

  13. Manjasetty BA, Turnbull AP, Panjikar S, Bussow K, Chance MR (2008) Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8(4):612–625. doi:10.1002/pmic.200700687

    Article  CAS  PubMed  Google Scholar 

  14. Thomas J, Tate CG (2014) Quality control in eukaryotic membrane protein overproduction. J Mol Biol 426(24):4139–4154. doi:10.1016/j.jmb.2014.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drew D, Newstead S, Sonoda Y, Kim H, von Heijne G, Iwata S (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3(5):784–798. doi:10.1038/nprot.2008.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thorsen TS, Matt R, Weis WI, Kobilka BK (2014) Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 22(11):1657–1664. doi:10.1016/j.str.2014.08.022

    Google Scholar 

  17. Norholm MH, Toddo S, Virkki MT, Light S, von Heijne G, Daley DO (2013) Improved production of membrane proteins in Escherichia coli by selective codon substitutions. FEBS Lett 587(15):2352–2358. doi:10.1016/j.febslet.2013.05.063

    Article  PubMed  Google Scholar 

  18. Oberg F, Ekvall M, Nyblom M, Backmark A, Neutze R, Hedfalk K (2009) Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in Pichia pastoris. Mol Membr Biol 26(4):215–227. doi:10.1080/09687680902862085

    Article  PubMed  Google Scholar 

  19. Mirzadeh K, Martinez V, Toddo S, Guntur S, Herrgard MJ, Elofsson A, Norholm MH, Daley DO (2015) Enhanced protein production in Escherichia coli by optimization of cloning scars at the vector-coding sequence junction. ACS Synth Biol 4(9):959–965. doi:10.1021/acssynbio.5b00033

    Article  CAS  PubMed  Google Scholar 

  20. Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197(2):451–465. doi:10.1534/genetics.114.161620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14(7):1729–1740. doi:10.1110/ps.051435705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Souza CM, Schwabe TM, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H (2011) A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng 13(5):555–569. doi:10.1016/j.ymben.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Morioka S, Shigemori T, Hara K, Morisaka H, Kuroda K, Ueda M (2013) Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2. Appl Microbiol Biotechnol 97(9):4013–4020. doi:10.1007/s00253-012-4470-9

    Article  CAS  PubMed  Google Scholar 

  24. Hirz M, Richter G, Leitner E, Wriessnegger T, Pichler H (2013) A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na, K-ATPase alpha3beta1 isoform. Appl Microbiol Biotechnol 97(21):9465–9478. doi:10.1007/s00253-013-5156-7

    Article  CAS  PubMed  Google Scholar 

  25. Holmes WJ, Darby RA, Wilks MD, Smith R, Bill RM (2009) Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Factories 8:35. doi:10.1186/1475-2859-8-35

    Article  Google Scholar 

  26. Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15(5):1115–1126. doi:10.1110/ps.062098206, ps.062098206

    Google Scholar 

  27. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376(1):34–46. doi:10.1006/abbi.2000.1712, S0003-9861(00)91712-0

    Google Scholar 

  28. Bora N, Bawa Z, Bill RM, Wilks MD (2012) The implementation of a design of experiments strategy to increase recombinant protein yields in yeast (review). Methods Mol Biol 866:115–127. doi:10.1007/978-1-61779-770-5_11

    Article  CAS  PubMed  Google Scholar 

  29. Kota J, Gilstring CF, Ljungdahl PO (2007) Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J Cell Biol 176(5):617–628. doi:10.1083/jcb.200612100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RMB acknowledges funding from the Biotechnology and Biological Sciences Research Council (BBSRC; via grants BB/I019960/1 and BB/L502194/1) and the Innovative Medicines Joint Undertaking under Grant Agreement number 115583 to the ND4BB ENABLE Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roslyn M. Bill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cartwright, S.P., Mikaliunaite, L., Bill, R.M. (2016). Membrane Protein Production in the Yeast, S. cerevisiae . In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 1432. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3637-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3637-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3635-9

  • Online ISBN: 978-1-4939-3637-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics