Skip to main content

Single-Molecule Narrow-Field Microscopy of Protein–DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1431))

Abstract

Single-molecule narrow-field microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain subcellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyze these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single-molecule problem—a single repressor protein binding a single binding site in the genome can dramatically alter behavior at the whole cell and population level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wollman AJM, Miller H, Zhou Z et al (2015) Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 43:139–145

    Article  CAS  PubMed  Google Scholar 

  2. Lenn T, Leake MC, Mullineaux CW (2008) Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? Biochem Soc Trans 36:1032–1036

    Article  CAS  PubMed  Google Scholar 

  3. Plank M, Wadhams GH, Leake MC (2009) Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol 1:602–612

    Article  CAS  Google Scholar 

  4. Chiu S-W, Leake MC (2011) Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 12:2518–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robson A, Burrage K, Leake MC (2013) Inferring diffusion in single live cells at the single-molecule level. Philos Trans R Soc Lond B Biol Sci 368:20120029

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bryan SJ, Burroughs NJ, Shevela D et al (2014) Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol 94(5):1179–1195

    Article  CAS  PubMed Central  Google Scholar 

  7. Llorente-Garcia I, Lenn T, Erhardt H et al (2014) Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811–824

    Article  CAS  PubMed  Google Scholar 

  8. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338:528–531

    Article  CAS  PubMed  Google Scholar 

  10. Wollman AJM, Nudd R, Hedlund EG et al (2015) From animaculum to single molecules: 300 years of the light microscope. Open Biol 5:150019–150019

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lundin M, Nehlin JO, Ronne H (1994) Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol 14:1979–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:13–24

    Article  CAS  PubMed  Google Scholar 

  14. Ghillebert R, Swinnen E, Wen J et al (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    Article  CAS  PubMed  Google Scholar 

  15. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Vit MJ, Waddle J, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bendrioua L, Smedh M, Almquist J et al (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289:12863–12875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith FC, Davies SP, Wilson WA et al (1999) The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 453:219–223

    Article  CAS  PubMed  Google Scholar 

  20. Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ostling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168

    Article  CAS  PubMed  Google Scholar 

  22. Frolova E (1999) Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulation by glucose and chromatin structure. Nucleic Acids Res 27:1350–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeVit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9:1231–1241

    Article  CAS  PubMed  Google Scholar 

  24. Wollman A, Leake MC (2015) Single molecule microscopy: millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Farad Discuss 184:401–424

    Google Scholar 

  25. Miller H, Zhaokun Z, Wollman AJM et al (2015) Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 88:81–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sviatlana Shashkova and Stefan Hohmann (University of Gothenburg, Sweden) for donation of yeast cell strains and assistance with yeast cell culturing. M.C.L. was assisted by a Royal Society URF and research funds from the Biological Physical Sciences Institute (BPSI) of the University of York, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. M. Wollman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wollman, A.J.M., Leake, M.C. (2016). Single-Molecule Narrow-Field Microscopy of Protein–DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells. In: Leake, M. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 1431. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3631-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3631-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3629-8

  • Online ISBN: 978-1-4939-3631-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics