Skip to main content

Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1430))

Abstract

Angiogenesis is a hallmark of cancer and is important for tumor growth, development, and metastasis. Leukocytes, including neutrophils, eosinophils, basophils, lymphocytes, and monocytes, are found invading many solid tumors, and this inflammation is often associated with tumorigenesis. Tumor-associated macrophages have been shown to be involved in tumor migration and metastasis and are modulators of tumor vascularization. Tumor-associated macrophages are a source of angiogenic factors, and pro-inflammatory cytokines involved in angiogenesis, lymphangiogenesis, and metastasis. Here we describe a method of quantifying the number of macrophages and their class within tumor tissue which can be compared with tumor blood and lymphatic microvessel density as a measure of angiogenesis and lymphangiogenesis. Although not described in depth, application of the methodology is described for other leukocyte populations, such as tumor-infiltrating lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruegg C (2006) Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol 80:682–684

    Article  CAS  PubMed  Google Scholar 

  2. Shih YY, Hsu YH, Duong TQ et al (2011) Longitudinal study of tumor-associated macrophages during tumor expansion using MRI. NMR Biomed 24:1353–1360

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ammar A, Mohammed RA, Salmi M et al (2011) Lymphatic expression of CLEVER-1 in breast cancer and its relationship with lymph node metastasis. Anal Cell Pathol (Amst) 34:67–78

    Article  CAS  Google Scholar 

  4. Storr SJ, Safuan S, Mitra A et al (2012) Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol 25:493–504

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  CAS  PubMed  Google Scholar 

  6. Lewis JS, Landers RJ, Underwood JC et al (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158

    Article  CAS  PubMed  Google Scholar 

  7. Barbera-Guillem E, Nyhus JK, Wolford CC et al (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62:7042–7049

    CAS  PubMed  Google Scholar 

  8. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Shintani S, Terakado N et al (2005) Microvessel density and expression of vascular endothelial growth factor, basic fibroblast growth factor, and platelet-derived endothelial growth factor in oral squamous cell carcinomas. Int J Oral Maxillofac Surg 34:559–565

    Article  CAS  PubMed  Google Scholar 

  10. Cohen T, Nahari D, Cerem LW et al (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741

    Article  CAS  PubMed  Google Scholar 

  11. Fujimoto J, Aoki I, Khatun S et al (2002) Clinical implications of expression of interleukin-8 related to myometrial invasion with angiogenesis in uterine endometrial cancers. Ann Oncol 13:430–434

    Article  CAS  PubMed  Google Scholar 

  12. Leibovich SJ, Polverini PJ, Shepard HM et al (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329:630–632

    Article  CAS  PubMed  Google Scholar 

  13. Wei LH, Kuo ML, Chen CA et al (2001) Interleukin-6 in cervical cancer: the relationship with vascular endothelial growth factor. Gynecol Oncol 82:49–56

    Article  CAS  PubMed  Google Scholar 

  14. Medrek C, Ponten F, Jirstrom K et al (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shabo I, Stal O, Olsson H et al (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123:780–786

    Article  CAS  PubMed  Google Scholar 

  16. Webb JR, Milne K, Watson P et al (2014) Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 20:434–444

    Article  CAS  PubMed  Google Scholar 

  17. Allavena P, Sica A, Solinas G et al (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  18. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  19. Ramprasad MP, Terpstra V, Kondratenko N et al (1996) Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A 93:14833–14838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunisch E, Fuhrmann R, Roth A et al (2004) Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 63:774–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaer DJ, Schaer CA, Buehler PW et al (2006) CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107:373–380

    Article  CAS  PubMed  Google Scholar 

  22. Edin S, Wikberg ML, Dahlin AM et al (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7, e47045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buechler C, Ritter M, Orso E et al (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103

    CAS  PubMed  Google Scholar 

  24. Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629

    CAS  PubMed  Google Scholar 

  25. Vermeulen PB, Gasparini G, Fox SB et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38:1564–1579

    Article  CAS  PubMed  Google Scholar 

  26. Tan KL, Scott DW, Hong F et al (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood 120:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berbic M, Schulke L, Markham R et al (2009) Macrophage expression in endometrium of women with and without endometriosis. Hum Reprod 24:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge a grant from Breast Cancer Campaign (2011NovSP025) which funded this area of their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Storr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ahmad, N.S., Martin, S.G., Storr, S.J. (2016). Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis. In: Martin, S., Hewett, P. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 1430. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3628-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3628-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3626-7

  • Online ISBN: 978-1-4939-3628-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics