Skip to main content

In Vivo Models of Muscle Angiogenesis

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1430))

Abstract

Angiogenesis is an important determinant of tissue function, from delivery of oxygen and other substrates to removal of waste products, in health and disease (e.g., adaptive or pathological remodelling). The phenotype and functional responses of endothelial cells are conditioned by systemic humoral signals and local environmental factors, including the haemodynamic forces that act upon them. Here we describe some interventions that have been helpful in unraveling the integrative nature of the complex in vivo response, and quantitative assessment of angiogenesis in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lekes PI (1999) Endothelium and mechanical forces. Harwood Academic Publishers, London

    Book  Google Scholar 

  2. Egginton S, Gerritsen M (2003) Lumen formation: in vivo versus in vitro observations. Microcirculation 10:45–61

    Article  PubMed  Google Scholar 

  3. Nash GB, Egginton S (2005) Modelling the effects of the haemodynamic environment on endothelial cell responses relevant to angiogenesis, in angiogenesis assays: a critical appraisal of current techniques. In: Staton CA, Lewis C, Bicknell R (eds) Angiogenesis assays—a critical appraisal of current techniques. John Wiley & Sons, London

    Google Scholar 

  4. Egginton S, Zhou A-L, Brown MD et al (2001) Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49:634–646

    Article  CAS  PubMed  Google Scholar 

  5. Barakat A, Lieu D (2003) Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys 38:323–343

    Article  CAS  PubMed  Google Scholar 

  6. Zhou A, Egginton S, Hudlicka O et al (1998) Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res 293:293–303

    Article  CAS  PubMed  Google Scholar 

  7. Zhou AL, Egginton S, Brown MD et al (1998) Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec 252:49–63

    Article  CAS  PubMed  Google Scholar 

  8. Deveci D, Marshall JM, Egginton S (2001) Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol Heart Circ Physiol 281:H241–H252

    CAS  PubMed  Google Scholar 

  9. Milkiewicz M, Hudlicka O, Verhaeg J et al (2003) Differential expression of Flk-1 and Flt-1 in rat skeletal muscle in response to chronic ischaemia: favourable effect of muscle activity. Clin Sci (Lond) 105:473–482

    Article  CAS  Google Scholar 

  10. Williams JL, Weichert A, Zakrzewicz A et al (2006) Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis. Clin Sci (Lond) 110:587–595

    Article  CAS  Google Scholar 

  11. Olfert IM, Birot O (2011) Importance of anti-angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation 18:316–330

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  13. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hudlická O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417

    PubMed  Google Scholar 

  15. Egginton S (2009) Invited review: activity-induced angiogenesis. Pflügers Arch 457:963–977

    Article  CAS  PubMed  Google Scholar 

  16. Egginton S (2011) Physiological factors influencing capillary growth. Acta Physiol (Oxf) 202:225–239

    Article  CAS  Google Scholar 

  17. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314:107–117

    Article  PubMed  Google Scholar 

  18. Williams JL, Cartland D, Hussain A et al (2006) A differential role for nitric oxide in two forms of physiological angiogenesis in mouse. J Physiol 570:445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudlicka O, Egginton S, Brown MD et al (1994) Effect of long-term electrical stimulation on vascular supply and fatigue in chronically ischemic muscles. J Appl Physiol 77:1317–1324

    CAS  PubMed  Google Scholar 

  20. Linderman JR, Kloehn MR, Greene AS (2000) Development of an implantable muscle stimulator: measurement of stimulated angiogenesis and poststimulus vessel regression. Microcirculation 7:119–128

    Article  CAS  PubMed  Google Scholar 

  21. Egginton S, Hulicka O, Brown MD et al (1985) Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. J Appl Physiol 85:2025–2032

    Google Scholar 

  22. Kirkeby S, Mandel U, Vedtofte P (1993) Identification of capillaries in sections from skeletal muscle by use of lectins and monoclonal antibodies reacting with histo-blood group ABH antigens. Glycoconj J 10:181–188

    Article  CAS  PubMed  Google Scholar 

  23. Egginton S (1990) Morphometric analysis of tissue capillary supply. Adv Comp Environ Physiol 6:73–141

    Article  Google Scholar 

  24. Egginton S (1990) Numerical and areal density estimates of fibre type composition in a skeletal muscle (rat extensor digitorum longus). J Anat 168:73–80

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    Article  CAS  PubMed  Google Scholar 

  26. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7:e35273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Development of the ideas in this chapter has been supported by the BBSRC, BHF, MRC, and Wellcome Trust; discussions with many colleagues and students have been extremely helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Egginton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Egginton, S. (2016). In Vivo Models of Muscle Angiogenesis. In: Martin, S., Hewett, P. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 1430. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3628-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3628-1_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3626-7

  • Online ISBN: 978-1-4939-3628-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics