Skip to main content

Measurement of Angiogenesis, Arteriolargenesis, and Lymphangiogenesis Phenotypes by Use of Two-Dimensional Mesenteric Angiogenesis Assay

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1430))

Abstract

Successful therapeutic angiogenesis requires an understanding of how the myriad interactions of growth factors released during angiogenesis combine to form a mature vascular bed. This requires a model in which multiple physiological and cell biological parameters can be identified. The adenoviral-mediated mesenteric angiogenesis assay as described here is ideal for that purpose. The clear, thin, and relatively avascular mesenteric panel can be used to measure increased vessel perfusion by intravital microscopy. In addition, high-powered microvessel analysis is carried out by immunostaining of features essential for the study of angiogenesis or lymphangiogenesis (including endothelium, pericyte, smooth muscle cell area, and proliferation), allowing functional data to be obtained in conjunction with high-power microvessel ultrastructural analysis. Therefore, the mesenteric angiogenesis model offers a robust system to analyze the morphological changes associated with angiogenesis, induced by different agents.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang WY et al (2004) An adenovirus-mediated gene-transfer model of angiogenesis in rat mesentery. Microcirculation 11(4):361–375

    Article  CAS  PubMed  Google Scholar 

  2. Rissanen TT et al (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92(10):1098–1106

    Article  CAS  PubMed  Google Scholar 

  3. Vajanto I et al (2002) Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J Gene Med 4(4):371–380

    Article  CAS  PubMed  Google Scholar 

  4. Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A 99(12):8219–8224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baluk P et al (2004) Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways. Am J Pathol 165(4):1071–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Detmar M et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111(1):1–6

    Article  CAS  PubMed  Google Scholar 

  7. Sundberg C et al (2001) Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 158(3):1145–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thurston G et al (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6(4):460–463

    Article  CAS  PubMed  Google Scholar 

  9. Cursiefen C et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ziche M et al (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99(11):2625–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glass CA, Harper SJ, Bates DO (2006) The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J Physiol 572(Pt 1):243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bates DO (1998) The chronic effect of vascular endothelial growth factor on individually perfused frog mesenteric microvessels. J Physiol 513(Pt 1):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dietrich HH (1989) Effect of locally applied epinephrine and norepinephrine on blood flow and diameter in capillaries of rat mesentery. Microvasc Res 38(2):125–135

    Article  CAS  PubMed  Google Scholar 

  14. Takano H et al (2004) Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization. J Physiol 556(Pt 3):887–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benest AV et al (2006) VEGF and angiopoietin-1 stimulate different angiogenic phenotypes that combine to enhance functional neovascularization in adult tissue. Microcirculation 13(6):423–437

    Article  CAS  PubMed  Google Scholar 

  16. Cristofaro B et al (2010) Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 30(6):1143–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benest AV et al (2008) VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res 78(2):315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stone OA et al (2009) Critical role of tissue kallikrein in vessel formation and maturation: implications for therapeutic revascularization. Arterioscler Thromb Vasc Biol 29(5):657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benest AV et al (2008) Arteriolar genesis and angiogenesis induced by endothelial nitric oxide synthase overexpression results in a mature vasculature. Arterioscler Thromb Vasc Biol 28(8):1462–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreihofer AM, Hair CD, Stepp DW (2005) Reduced plasma volume and mesenteric vascular reactivity in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 288(1):R253–R261

    Article  CAS  PubMed  Google Scholar 

  21. Sweat RS, Stapor PC, Murfee WL (2012) Relationships between lymphangiogenesis and angiogenesis during inflammation in rat mesentery microvascular networks. Lymphat Res Biol 10(4):198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew V. Benest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Benest, A.V., Bates, D.O. (2016). Measurement of Angiogenesis, Arteriolargenesis, and Lymphangiogenesis Phenotypes by Use of Two-Dimensional Mesenteric Angiogenesis Assay. In: Martin, S., Hewett, P. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 1430. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3628-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3628-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3626-7

  • Online ISBN: 978-1-4939-3628-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics