Skip to main content

Stem Cell Spheroid-Based Sprout Assay in Three-Dimensional Fibrin Scaffold: A Novel In Vitro Model for the Study of Angiogenesis

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1430))

Abstract

Angiogenesis is a complex process of critical importance during development and in physiological and pathophysiological conditions. There is considerable research interest in studying the angiogenesis cascade and consequently a need for a physiologically valid, quantitative, and cost-effective assay. In this chapter, we describe the stem cell spheroid-based sprout assay in three-dimensional fibrin scaffold which allows fast and easy screening of pro- and anti-angiogenic effects of substances with a high degree of reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J, Klagsbrun M (1978) Angiogenic factors. Science 235:442–447

    Article  Google Scholar 

  2. Auerbach R, Lewis R, Shinners BL et al (2003) Angiogenesis assay: a critical review. Clin Chem 49:32–40

    Article  CAS  PubMed  Google Scholar 

  3. Blacher S, Erpicum C, Lenoir B et al (2014) Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour. Plos One 9:e97019

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sleeman JP (2010) Understanding the mechanisms of lymphangiogenesis: a hope for cancer therapy? Phlebolymphology 17:99–107

    Google Scholar 

  5. Breier G (2000) Angiogenesis in embryonic development: a review. Placenta 21:S11–S15

    Article  PubMed  Google Scholar 

  6. Reynolds LP, Grazul-Bilska AT, Redmer DA (2002) Angiogenesis in the female reproductive organs: pathological implications. Int J Exp Pathol 83:151–163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int. doi:10.1155/2013/146764

    Google Scholar 

  8. Portal-Nunez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27:559–566

    CAS  PubMed  Google Scholar 

  9. Auerbach R, Akhtar N, Lewis RL et al (2000) Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev 19:167–172

    Article  CAS  PubMed  Google Scholar 

  10. Weis AM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Google Scholar 

  11. Sharifpanah F, Saliu F, Bekhite M et al (2014).β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signaling. Cell Tissue Res 358:443–452

    Google Scholar 

  12. Maruotti N, Annese T, Cantatore FP et al (2013) Macrophages and angiogenesis in rheumatic diseases. Vasc Cell 5:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maruotti N, Cantatore FP, Crivellato E et al (2006) Angiogenesis in rheumatoid arthiritis. Histol Histopathol 21:557–566

    CAS  PubMed  Google Scholar 

  14. Crawford TN, Alfaro DV, Kerrison JB et al (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5:8–13

    Article  CAS  PubMed  Google Scholar 

  15. Guerard S, Pouliot R (2012) The role of angiogenesis in the pathogenesis of psoriasis: mechanisms and clinical implications. J Clin Exp Dermatol Res S2:007. doi:10.4172/2155-9554.S2-007

    Google Scholar 

  16. Kaminsky SM, Rosengart TK, Rosenberg J et al (2013) Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Hum Gene Ther 24:948–963

    Article  CAS  PubMed  Google Scholar 

  17. Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10:588–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82

    Article  CAS  PubMed  Google Scholar 

  19. Nehls V, Drenckhahn D (1995) A novel microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50:311–322

    Article  CAS  PubMed  Google Scholar 

  20. Staton CA, Reed MWR, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Staton CA, Stribbling SM, Tazzyman S et al (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85:233–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koh W, Straman AN, Sacharidou A et al (2008) In vitro three-dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101

    Article  CAS  PubMed  Google Scholar 

  23. Zeitlin BD, Dong Z, Nör JE (2012) RAIN-Droplet: a novel 3D in vitro angiogenesis model. Lab Invest 92:988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74:172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wobus AM (2001) Potential of embryonic stem cells. Mol Aspects Med 22:149–164

    Article  CAS  PubMed  Google Scholar 

  26. Graf U, Casanova EA, Cinelli P (2011) The role of the leukemia inhibitory factor-pathway in derivation and maintenance of murine pluripotent stem cells. Genes 2:280–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wartenberg M, Günther J, Hscheler J et al (1998) The embryoid body as a novel in vitro assay system for anti-angiogenic agents. Lab Invest 78:1301–1314

    CAS  PubMed  Google Scholar 

  28. Li J, Stuhlmann H (2011) In vitro imaging of angiogenesis using embryonic stem cell-derived endothelial cells. Stem Cells Dev 21:331–342

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shinkaruk S, Bayle M, Lain G et al (2003) Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents 3:95–117

    Article  CAS  PubMed  Google Scholar 

  30. Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V et al (2014) Monocytes subpopulations in angiogenesis. Cancer Res 74:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lingen MW (2001) Role of leukosytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med 125:67–71

    CAS  PubMed  Google Scholar 

  32. Walter J, Sane DC (2000) The role of smooth muscle cells and pericytes in angiogenesis. In: Mousa SA (ed) Angiogenesis inhibitors and stimulators: potential therapeutic implications. Landes Bioscience, Georgetown, Texas, pp 25–30. ISBN 13: 978-158706022933

    Google Scholar 

  33. Sharifpanah F, De Silva S, Bekhite M et al (2015) Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA. Free Radic Biol Med 89:1203–1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sharifpanah, F., Sauer, H. (2016). Stem Cell Spheroid-Based Sprout Assay in Three-Dimensional Fibrin Scaffold: A Novel In Vitro Model for the Study of Angiogenesis. In: Martin, S., Hewett, P. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 1430. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3628-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3628-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3626-7

  • Online ISBN: 978-1-4939-3628-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics