Skip to main content

Preparation of Functional, Fluorescently Labeled mRNA Capped with Anthraniloyl-m7GpppG

  • Protocol
  • First Online:
Synthetic mRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

Fluorescent mRNA molecules offer a wide range of applications for studying capping/decapping reactions, translation, and other biophysical studies. Furthermore, fluorescent tags prove invaluable for tracking RNA molecules in cells. Here, we describe an efficient synthesis of a fluorescent cap analog, anthranioyl-GTP, its purification, and in vitro cap labeling of transcribed mRNA catalyzed by the recombinant vaccinia capping enzyme to produce anthranioyl-m7GpppG-capped RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koukhareva II, Lebedev AV (2004) Chemical route to the capped RNAs. Nucleosides Nucleotides Nucleic Acids 23:1667–1680

    Article  CAS  PubMed  Google Scholar 

  2. Furuichi Y, LaFiandra A, Shatkin AJ (1977) 5′-Terminal structure and mRNA stability. Nature 266:235–239

    Article  CAS  PubMed  Google Scholar 

  3. Lewis JD, Izaurralde E (1997) The role of the cap structure in RNA processing and nuclear export. Eur J Biochem 247:461–469

    Article  CAS  PubMed  Google Scholar 

  4. Iizuka N, Najita L, Franzusoff A, Sarnow P (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14:7322–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cougot N, van Dijk E, Babajko S, Séraphin B (2004) Cap-tabolism. Trends Biochem Sci 29:436–444

    Article  CAS  PubMed  Google Scholar 

  6. Carberry SE, Darzynkiewicz E, Goss DJ (1991) A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry 30:1624–1627

    Article  CAS  PubMed  Google Scholar 

  7. Carberry SE, Friedland DE, Rhoads RE, Goss DJ (1992) Binding of protein synthesis initiation factor 4E to oligoribonucleotides: effects of cap accessibility and secondary structure. Biochemistry 31:1427–1432

    Article  CAS  PubMed  Google Scholar 

  8. Domashevskiy AV, Miyoshi H, Goss DJ (2012) Inhibition of pokeweed antiviral protein (PAP) by turnip mosaic virus genome-linked protein (VPg). J Biol Chem 287:29729–29738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Domashevskiy AV, Cheng SY (2015) Thermodynamic analysis of binding and enzymatic properties of pokeweed antiviral protein (PAP) toward tobacco etch virus (TEV) RNA. J Nat Sci 1:e82

    Google Scholar 

  10. Gunawardana D, Domashevskiy AV, Gayler KR, Goss DJ (2014) Efficient preparation and properties of mRNA containing a fluorescent cap analog: Anthraniloyl-m7GpppG. Translation 3:e988538

    Article  Google Scholar 

  11. Ren J, Goss DJ (1996) Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins. Nucleic Acids Res 24:3629–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shuman S (1990) Catalytic activity of vaccinia mRNA capping enzyme subunits coexpressed in Escherichia coli. J Biol Chem 265:11960–11966

    CAS  PubMed  Google Scholar 

  13. Higman MA, Christen LA, Niles EG (1994) The mRNA (guanine-7-) methyltransferase domain of the vaccinia virus mRNA capping enzyme. Expression in Escherichia coli and structural and kinetic comparison to the intact capping enzyme. J Biol Chem 269:14974–14981

    CAS  PubMed  Google Scholar 

  14. Myette JR, Nieles EG (1996) Domain structure of the vaccinia virus mRNA capping enzyme. Expression in Escherichia coli of a subdomain possessing the RNA 5′-triphosphatase and guanylyltransferase activities and a kinetic comparison to the full-size enzyme. J Biol Chem 271:11936–11944

    Article  CAS  PubMed  Google Scholar 

  15. Kyrieleis OJ, Chang J, de la Peña M, Shuman S, Cusack S (2014) Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 22:452–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu SW, Jiao X, Welch S, Kiledjian M (2008) Analysis of mRNA decapping. Methods Enzymol 448:3–21

    Article  CAS  PubMed  Google Scholar 

  17. Piccirillo C, Khanna R, Kiledjian M (2003) Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9:1138–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Song MG, Kiledjian M (2008) Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol 28:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan MA, Goss DJ (2004) Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat. Biochemistry 43:9092–9097

    Article  CAS  PubMed  Google Scholar 

  20. Khan MA, Goss DJ (2005) Translation initiation factor (eIF) 4B affects the rates of binding of the mRNA m7G cap analogue to wheat germ eIFiso4F and eIFiso4F.PABP. Biochemistry 44:4510–4516

    Article  CAS  PubMed  Google Scholar 

  21. Domashevskiy AV (2012) Turnip mosaic virus genome-linked protein (VPg) inhibits pokeweed antiviral protein (PAP)-mediated depurination of RNA. Doctorate, Graduate Center and Hunter College, City University of New York

    Google Scholar 

  22. Hiratsuka T (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta 742:496–508

    Article  CAS  PubMed  Google Scholar 

  23. Gurevich VV, Pokrovskaya ID, Obukhova TA, Zozulya SA (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem 195:207–213

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham PR, Ofengard J (1990) Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Biotechniques 9:713–714

    CAS  PubMed  Google Scholar 

  25. Dasso MC, Jackson RJ (1989) Efficient initiation of mammalian mRNA translation at a CUG codon. Nucleic Acids Res 17:6485–6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herrmann BG, Frischauf AM (1987) Isolation of genomic DNA. Methods Enzymol 152:180–183

    Article  CAS  PubMed  Google Scholar 

  27. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22:478–481

    Google Scholar 

  29. Baldwin AE, Khan MA, Tumer NE, Goss DJ, Friedland DE (2009) Characterization of pokeweed antiviral protein binding to mRNA cap analogs: competition with nucleotides and enhancement by translation initiation factor iso4G. Biochim Biophys Acta 1789:109–116

    Article  CAS  PubMed  Google Scholar 

  30. Harder KW, Owen P, Wong LK, Aebersold R, Clark-Lewis I, Jirik FR (1994) Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J 298:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270

    Article  CAS  PubMed  Google Scholar 

  32. Zhang S, Williams CJ, Wormington M, Stevens A, Peltz SW (1999) Monitoring mRNA decapping activity. Methods 17:46–51

    Article  PubMed  Google Scholar 

  33. Jones BN, Quang-Dang DU, Oku Y, Gross JD (2008) A kinetic assay to monitor RNA decapping under single- turnover conditions. Methods Enzymol 448:23–40

    Article  CAS  PubMed  Google Scholar 

  34. Blewett N, Coller J, Goldstrohm A (2011) A quantitative assay for measuring mRNA decapping by splinted ligation reverse transcription polymerase chain reaction: qSL-RT-PCR. RNA 17:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shinshi H, Miwa M, Kato K, Noguchi M, Matsushima T, Sugimura T (1976) A novel phosphodiesterase from cultured tobacco cells. Biochemistry 15:2185–2190

    Article  CAS  PubMed  Google Scholar 

  36. Shinshi H, Miwa M, Sugimura T (1976) Enzyme cleaving the 5′-terminal methylated blocked structure of messenger RNA. FEBS Lett 65:254–257

    Article  CAS  PubMed  Google Scholar 

  37. Lu G, Zhang J, Li Y, Li Z, Zhang N, Xu X, Wang T, Guan Z, Gao GF, Yan J (2011) hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell 2:64–73

    Article  CAS  PubMed  Google Scholar 

  38. Song MG, Li Y, Kiledjian M (2010) Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40:423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–358

    Article  CAS  PubMed  Google Scholar 

  40. Anderson CW, Straus JW, Dudock BS (1983) Preparation of a cell-free protein-synthesizing system from wheat germ. Methods Enzymol 101:635–644

    Article  CAS  PubMed  Google Scholar 

  41. Krieg PA, Melton D (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weber LA, Hickey ED, Nuss DL, Baglioni C (1977) 5′-Terminal 7-methylguanosine and mRNA function: influence of potassium concentration on translation in vitro. Proc Natl Acad Sci U S A 74:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Jason A. Domashevskiy for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem V. Domashevskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Domashevskiy, A.V., Rodriguez, D.J., Gunawardana, D., Goss, D.J. (2016). Preparation of Functional, Fluorescently Labeled mRNA Capped with Anthraniloyl-m7GpppG. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics