Skip to main content

Enzymatic Modification of 5′-Capped RNA and Subsequent Labeling by Click Chemistry

  • Protocol
  • First Online:
Book cover Synthetic mRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

The combination of enzymatic modification and bioorthogonal click chemistry provides a powerful approach for site-specific labeling of different classes of biomolecules in vitro and even in cellular environments. Herein, we describe a chemoenzymatic method to site specifically label 5′-capped model mRNAs independent of their sequence. A trimethylguanosine synthase was engineered to introduce alkyne, azido, or 4-vinylbenzyl moieties to the 5′-cap. These functional groups were then used for labeling using typical click reactions, such as the azide-alkyne cycloaddition or the tetrazine ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Januschke J, Gervais L, Dass S et al (2002) Polar transport in the Drosophilia oocyte requires Dynein and Kinesin I cooperation. Curr Biol 12:1971–1981

    Article  CAS  PubMed  Google Scholar 

  2. King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33

    Article  CAS  PubMed  Google Scholar 

  3. Melton DA (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80–82

    Article  CAS  PubMed  Google Scholar 

  4. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  PubMed  Google Scholar 

  5. Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97:97–110

    Article  CAS  PubMed  Google Scholar 

  6. Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58

    Article  CAS  PubMed  Google Scholar 

  8. Lin AC, Holt CE (2007) Local translation and directional steering in axons. EMBO J 26:3729–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Politz JC, Browne ES, Wolf DE et al (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A 95:6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinne JS, Kaminski TP, Kubitscheck U et al (2013) Light-inducible molecular beacons for spatio-temporally highly defined activation. Chem Commun 49:5375–5377

    Article  CAS  Google Scholar 

  11. Kummer S, Knoll A, Socher E et al (2012) PNA FIT-probes for the dual color imaging of two viral mRNA targets in influenza H1N1 infected live cells. Bioconjug Chem 23:2051–2060

    Article  CAS  PubMed  Google Scholar 

  12. Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10:1219–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshimura H, Inaguma A, Yamada T et al (2012) Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7:999–1005

    Article  CAS  PubMed  Google Scholar 

  14. Ozawa T, Natori Y, Sato M et al (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419

    CAS  PubMed  Google Scholar 

  15. Kellermann SJ, Rath AK, Rentmeister A (2013) Tetramolecular fluorescence complementation for detection of specific RNAs in vitro. Chembiochem 14:200–204

    Article  CAS  PubMed  Google Scholar 

  16. Lionnet T, Czaplinski K, Darzacq X et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jao CY, Salic A (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105:15779–15784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schulz D, Holstein JM, Rentmeister A (2013) A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem Int Ed Engl 52:7874–7878

    Article  CAS  PubMed  Google Scholar 

  19. Motorin Y, Burhenne J, Teimer R et al (2011) Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res 39:1943–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tomkuviene M, Clouet-D'orval B, Cerniauskas I et al (2012) Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res 40:6765–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seidu-Larry S, Krieg B, Hirsch M et al (2012) A modified guanosine phosphoramidite for click functionalization of RNA on the sugar edge. Chem Commun 48:11014–11016

    Article  CAS  Google Scholar 

  22. Aigner M, Hartl M, Fauster K et al (2011) Chemical synthesis of site-specifically 2′-azido-modified RNA and potential applications for bioconjugation and RNA interference. Chembiochem 12:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pyka AM, Domnick C, Braun F et al (2014) Diels-Alder cycloadditions on synthetic RNA in mammalian cells. Bioconjug Chem 25:1438–1443

    Article  CAS  PubMed  Google Scholar 

  24. Schoch J, Ameta S, Jaschke A (2011) Inverse electron-demand Diels-Alder reactions for the selective and efficient labeling of RNA. Chem Commun 47:12536–12537

    Article  CAS  Google Scholar 

  25. Grammel M, Hang H, Conrad NK (2012) Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. Chembiochem 13:1112–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li F, Dong J, Hu X et al (2015) A covalent approach for site-specific RNA labeling in mammalian cells. Angew Chem Int Ed Engl 54:4597–4602

    Article  CAS  PubMed  Google Scholar 

  27. Winz ML, Samanta A, Benzinger D et al (2012) Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 40:e78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holstein JM, Schulz D, Rentmeister A (2014) Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs. Chem Commun 50:4478–4481

    Article  CAS  Google Scholar 

  29. Holstein JM, Stummer D, Rentmeister A (2015) Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction. Chem Sci 6:1362–1369

    Article  CAS  Google Scholar 

  30. Stummer D, Herrmann C, Rentmeister A (2015) Quantum chemical calculations and experimental validation of the photoclick reaction for fluorescent labeling of the 5′ cap of eukaryotic mRNAs. Chem Open 4:295–301

    CAS  Google Scholar 

  31. Hausmann S, Shuman S (2005) Giardia lamblia RNA cap guanine-N2 methyltransferase (Tgs2). J Biol Chem 280:32101–32106

    Article  CAS  PubMed  Google Scholar 

  32. Dalhoff C, Lukinavicius G, Klimasauakas S et al (2006) Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nat Protoc 1:1879–1886

    Article  CAS  PubMed  Google Scholar 

  33. Islam K, Bothwell I, Chen Y et al (2012) Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc 134:5909–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peters W, Willnow S, Duisken M et al (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed 49:5170–5173

    Article  CAS  Google Scholar 

  35. Sambrook J (2001) Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  36. Hoffman JL (1986) Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. Biochemistry 25:4444–4449

    Article  CAS  PubMed  Google Scholar 

  37. Iwig DF, Booker SJ (2004) Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine. Biochemistry 43:13496–13509

    Article  CAS  PubMed  Google Scholar 

  38. Schulz D, Rentmeister A (2012) An enzyme-coupled high-throughput assay for screening RNA methyltransferase activity in E. coli cell lysate. RNA Biol 9:577–586

    Article  CAS  PubMed  Google Scholar 

  39. Hendricks CL, Ross JR, Pichersky E et al (2004) An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem 326:100–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. R. gratefully acknowledges financial support from the Emmy Noether-Programme of the Deutsche Forschungsgemeinschaft (RE 2796/2-1) and the Fonds der Chemischen Industrie. This work was partly supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003 Cells in Motion—Cluster of Excellence, Münster, Germany. We thank Prof. Hahn (University of Hamburg) for providing the DNA template for transcription. We would like to thank Prof. Birgit Dräger (University of Halle, Germany) for plasmids encoding LuxS and MTAN. J. M. H. thanks the Fonds der Chemischen Industrie for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Rentmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Holstein, J.M., Stummer, D., Rentmeister, A. (2016). Enzymatic Modification of 5′-Capped RNA and Subsequent Labeling by Click Chemistry. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics