Skip to main content

FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3) ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8+ T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodally administered mRNA. Both compounds demonstrate a successful combination in terms of boosting the immune response. This chapter describes methods for intranodal immunization with naked mRNA by co-administration of FLT3 ligand, which leads to strong synergistic effects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wolff JA et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465

    Article  CAS  PubMed  Google Scholar 

  2. Chattopadhyay S, Sen GC (2014) dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res 34:427–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13:759

    Article  CAS  PubMed  Google Scholar 

  4. Holtkamp S et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009

    Article  CAS  PubMed  Google Scholar 

  5. Kallen KJ, Thess A (2014) A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kariko K, Kuo A, Barnathan E (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 6:1092

    Article  CAS  PubMed  Google Scholar 

  7. Kreiter S, Diken M, Selmi A, Tureci O, Sahin U (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23:399

    Article  CAS  PubMed  Google Scholar 

  8. Diken M et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702

    Article  CAS  PubMed  Google Scholar 

  9. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465

    Article  CAS  PubMed  Google Scholar 

  10. Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: From a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9:265

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kreiter S et al (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031

    Article  CAS  PubMed  Google Scholar 

  12. Conry RM et al (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55:1397

    CAS  PubMed  Google Scholar 

  13. Uchida S et al (2013) In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 8, e56220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1

    Article  CAS  PubMed  Google Scholar 

  15. Diken M et al (2013) mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA. Cancer Immunol Res 1:386

    Article  CAS  PubMed  Google Scholar 

  16. Carralot JP et al (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418

    Article  CAS  PubMed  Google Scholar 

  17. MartIn-Fontecha A et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kreiter S et al (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132

    Article  CAS  PubMed  Google Scholar 

  19. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR (1991) A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143

    Article  CAS  PubMed  Google Scholar 

  20. Gregory SH, Sagnimeni AJ, Zurowski NB, Thomson AW (2001) Flt3 ligand pretreatment promotes protective immunity to Listeria monocytogenes. Cytokine 13:202

    Article  CAS  PubMed  Google Scholar 

  21. Parajuli P et al (2001) Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res 61:8227

    CAS  PubMed  Google Scholar 

  22. Merad M, Sugie T, Engleman EG, Fong L (2002) In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 99:1676

    Article  CAS  PubMed  Google Scholar 

  23. Fong L et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 98:8809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jefford M et al (2003) Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 102:1753

    Article  CAS  PubMed  Google Scholar 

  25. Fong CL, Hui KM (2002) Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Ther 9:1127

    Article  CAS  PubMed  Google Scholar 

  26. Pulendran B et al (1998) Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 188:2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sumida SM et al (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114:1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diken M, Kreiter S, Selmi A, Tureci O, Sahin U (2013) Antitumor vaccination with synthetic mRNA: strategies for in vitro and in vivo preclinical studies. Methods Mol Biol 969:235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marc Holzmann for helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kreiter, S., Diken, M., Selmi, A., Petschenka, J., Türeci, Ö., Sahin, U. (2016). FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics