Skip to main content

Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Met O, Balslev E, Flyger H, Svane IM (2011) High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat 125:395–406

    Article  CAS  PubMed  Google Scholar 

  2. Choi Y, Yuen C, Maiti SN et al (2010) A high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells. Biomed Microdevices 12:855–863

    Article  CAS  PubMed  Google Scholar 

  3. Yarmush ML, Golberg A, Serša G et al (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

  4. Movahed S, Li D (2010) Microfluidics cell electroporation. Microfluid Nanofluid 10:703–734

    Article  Google Scholar 

  5. Geng T, Lu C (2013) Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13:3803–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng T, Zhan Y, Wang J, Lu C (2011) Transfection of cells using flow-through electroporation based on constant voltage. Nat Protoc 6:1192–1208. doi:10.1016/j.jconrel.2010.01.030

    Article  CAS  PubMed  Google Scholar 

  7. Selmeczi D, Hansen TS, Met O et al (2011) Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip. Biomed Microdevices 13:383–392. doi:10.1007/s10544-010-9507-1

    Article  PubMed  Google Scholar 

  8. Andresen KOØ, Hansen M, Matschuk M et al (2010) Injection molded chips with integrated conducting polymer electrodes for electroporation of cells. J Micromech Microeng 20:55010. doi:10.1088/0960-1317/20/5/055010

    Article  Google Scholar 

  9. Met O, Eriksen J, Svane IM (2008) Studies on mRNA electroporation of immature and mature dendritic cells: effects on their immunogenic potential. Mol Biotechnol 40:151–160

    Article  CAS  PubMed  Google Scholar 

  10. Hallab NJ, Anderson S, Caicedo M et al (2005) Effects of soluble metals on human peri-implant cells. J Biomed Mater Res A 74:124–140

    Article  PubMed  Google Scholar 

  11. Puleo DA, Huh WW (1995) Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater 6:109–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels B. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Selmeczi, D., Hansen, T.S., Met, Ö., Svane, I.M., Larsen, N.B. (2016). Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics