Skip to main content

Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences

  • Protocol
  • First Online:
Synthetic mRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1428))

Abstract

Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nirenberg M, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfield D, Levin J, Rottman F, Pestka S, Wilcox M, Anderson F (1966) The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol 31:11–24

    Article  CAS  PubMed  Google Scholar 

  2. Anderson WF, Fletcher JC (1980) Sounding boards. Gene therapy in human beings: when is it ethical to begin? N Engl J Med 303:1293–1297

    Article  CAS  PubMed  Google Scholar 

  3. Anderson WF (1992) Human gene therapy. Science 256:808–813

    Article  CAS  PubMed  Google Scholar 

  4. Waldrop MM (1992) Molecular Biology—Finding RNA makes proteins gives ‘RNA World’ a big boost. Science 256:1396–1397

    Article  CAS  PubMed  Google Scholar 

  5. Tan PH, Janes SE, Handa AI, Friend PJ (2008) More trouble ahead; is gene therapy coming of age? Expert Opin Biol Ther 8:561–567

    Article  CAS  PubMed  Google Scholar 

  6. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  7. Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE (1992) Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255:996–998

    Article  CAS  PubMed  Google Scholar 

  8. Martinon F, Krishnan S, Lenzen G, Magne R, Gomard E, Guillet JG, Levy JP, Meulien P (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722

    Article  CAS  PubMed  Google Scholar 

  9. Sahin U, Karikó K, Tureci O (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780

    Article  CAS  PubMed  Google Scholar 

  10. Kallen KJ, Thess A (2014) A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2:10–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Quabius ES, Krupp G (2015) Synthetic mRNAs for manipulating cellular phenotypes: an overview. N Biotechnol 32:229–235

    Article  CAS  PubMed  Google Scholar 

  12. Weissman D (2015) mRNA transcript therapy. Expert Rev Vaccines 14:265–281

    Article  CAS  PubMed  Google Scholar 

  13. Bernal JA (2013) RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. J Cardiovasc Transl Res 6:956–968

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caruthers MH (2013) The chemical synthesis of DNA/RNA: our gift to science. J Biol Chem 288:1420–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  16. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furuichi Y, Shatkin AJ (2000) Viral and cellular mRNA capping: past and prospects. Adv Virus Res 55:135–184

    Article  CAS  PubMed  Google Scholar 

  18. Martin SA, Moss B (1975) Modification of RNA by mRNA guanylyltransferase and mRNA (guanine-7-)methyltransferase from vaccinia virions. J Biol Chem 250:9330–9335

    CAS  PubMed  Google Scholar 

  19. Contreras R, Cheroutre H, Degrave W, Fiers W (1982) Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res 10:6353–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Konarska MM, Padgett RA, Sharp PA (1984) Recognition of a cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736

    Article  CAS  PubMed  Google Scholar 

  21. Yisraeli JK, Melton DA (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol 180:42–50

    Article  CAS  PubMed  Google Scholar 

  22. Gallie DR, Tanguay R (1994) Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem 269:17166–17173

    CAS  PubMed  Google Scholar 

  23. Decker CJ, Parker R (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 7:1632–1643

    Article  CAS  PubMed  Google Scholar 

  24. Martin G, Keller W (1998) Tailing and 3′-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4:226–230

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Palmiter RD, Carey NH (1974) Rapid inactivation of ovalbumin messenger ribonucleic acid after acute withdrawal of estrogen. Proc Natl Acad Sci U S A 71:2357–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lodish HF, Small B (1976) Different lifetimes of reticulocyte messenger RNA. Cell 7:59–65

    Article  CAS  PubMed  Google Scholar 

  27. Guyette WA, Matusik RJ, Rosen JM (1979) Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17:1013–1023

    Article  CAS  PubMed  Google Scholar 

  28. Sittman DB, Graves RA, Marzluff WF (1983) Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation. Proc Natl Acad Sci U S A 80:1849–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallie DR (1991) The cap and poly(A) function synergistically to regulate mRNA translation efficiency. Genes Dev 5:2108–2116

    Article  CAS  PubMed  Google Scholar 

  30. Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516–520

    Article  CAS  PubMed  Google Scholar 

  31. Michel YM, Poncet D, Piron M, Kean KM, Borman AM (2000) Cap-poly(A) synergy in mammalian cell-free extracts. J Biol Chem 275:32268–32276

    Article  CAS  PubMed  Google Scholar 

  32. Lall S, Friedman CC, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Davis RE (2004) Contribution of trans-splicing, 5′ -leader length, cap-poly(A) synergism, and initiation factors to nematode translation in an Ascaris suum embryo cell-free system. J Biol Chem 279:45573–45585

    Article  CAS  PubMed  Google Scholar 

  33. Mockey M, Goncalves C, Dupuy F, Lemoine F, Pichon C, Midoux P (2006) mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 340:1062–1068

    Article  CAS  PubMed  Google Scholar 

  34. Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Marcotrigiano J, Gingras A-C, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    Article  CAS  PubMed  Google Scholar 

  36. Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras A-C, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724

    Article  CAS  PubMed  Google Scholar 

  37. Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD (2008) mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 29:324–336

    Article  CAS  PubMed  Google Scholar 

  38. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogues 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG. RNA 7:1486–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE (2003) Novel “anti-reverse” cap analogues with superior translational properties. RNA 9:1108–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng Z-H, Sharma V, Singleton SF, Gershon PD (2002) Synthesis and application of a chain-terminating dinucleotide mRNA cap analog. Org Lett 4:161–164

    Article  CAS  PubMed  Google Scholar 

  41. Kore AR, Shanmugasundaram M, Charles I, Cheng AM, Barta TJ (2007) Synthesis and application of 2′-fluoro-substituted cap analogs. Bioorg Med Chem Lett 17:5295–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kore AR, Shanmugasundaram M, Vlassov AV (2008) Synthesis and application of a new 2′,3′-isopropylidene guanosine substituted cap analog. Bioorg Med Chem Lett 18:4828–4832

    Article  CAS  PubMed  Google Scholar 

  43. Kore AR, Shanmugasundaram M, Charles I, Vlassov AV, Barta TJ (2009) Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 131:6364–6365

    Article  CAS  PubMed  Google Scholar 

  44. Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE (2006) Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 281:1857–1867

    Article  CAS  PubMed  Google Scholar 

  45. Rabinovich P, Komarovskaya M, Ye Z, Imai C, Campana D, Bahceci E, Weissman S (2006) Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther 17:1027–1035

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Kiledjian M (2010) Regulation of mRNA decapping. Wiley Interdiscip Rev RNA 1:253–265

    Article  PubMed  CAS  Google Scholar 

  47. Chen CY, Shyu AB (2011) Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2:167–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu H, Rodgers ND, Jiao X, Kiledjian M (2002) The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 21:4699–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99:12663–12668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    Article  PubMed  PubMed Central  Google Scholar 

  52. Piccirillo C, Khanna R, Kiledjian M (2003) Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9:1138–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. She M, Decker CJ, Chen N, Tumati S, Parker R, Song H (2006) Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 13:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalek M, Jemielity J, Grudzien E, Zuberek J, Bojarska E, Cohen LS, Stepinski J, Stolarski R, Davis RE, Rhoads RE, Darzynkiewicz E (2005) Synthesis and biochemical properties of novel mRNA 5′ cap analogs resistant to enzymatic hydrolysis. Nucleosides Nucleotides Nucleic Acids 24:615–621

    Article  CAS  PubMed  Google Scholar 

  55. Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13:1745–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kowalska J, Lewdorowicz M, Zuberek J, Grudzien-Nogalska E, Bojarska E, Stepinski J, Rhoads RE, Darzynkiewicz E, Davis RE, Jemielity J (2008) Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Tureci O, Sahin U (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971

    Article  CAS  PubMed  Google Scholar 

  58. Su W, Slepenkov S, Grudzien-Nogalska E, Kowalska J, Kulis M, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J, Rhoads RE (2011) Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 17:978–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ziemniak M, Szabelski M, Lukaszewicz M, Nowicka A, Darzynkiewicz E, Rhoads RE, Wieczorek Z, Jemielity J (2013) Synthesis and evaluation of fluorescent cap analogues for mRNA labelling. RSC Adv 3:20943–20958

    Article  CAS  Google Scholar 

  60. Gunawardana D, Domashevskiy AV, Gayler KR, Goss DJ (2015) Efficient preparation and properties of mRNAs containing a fluorescent cap analog: Anthraniloyl-m7GpppG. Translation 3, e988538

    Article  PubMed  PubMed Central  Google Scholar 

  61. Baranowski MR, Nowicka A, Rydzik AM, Warminski M, Kasprzyk R, Wojtczak BA, Wojcik J, Claridge TD, Kowalska J, Jemielity J (2015) Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for 19F NMR studies. J Org Chem 80:3982–3997

    Article  CAS  PubMed  Google Scholar 

  62. Paredes E, Das SR (2011) Click chemistry for rapid labeling and ligation of RNA. Chembiochem 12:125–131

    Article  CAS  PubMed  Google Scholar 

  63. Holstein JM, Stummer D, Rentmeister A (2015) Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction. Chem Sci 6:1362–1369

    Article  CAS  Google Scholar 

  64. Nowakowska M, Kowalska J, Martin F, d’Orchymont A, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J (2014) Cap analogs containing 6-thioguanosine—reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Org Biomol Chem 12:4841–4847

    Article  CAS  PubMed  Google Scholar 

  65. Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135:1237–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olivares E, Landry DM, Caceres CJ, Pino K, Rossi F, Navarrete C, Huidobro-Toro JP, Thompson SR, Lopez-Lastra M (2014) The 5′ untranslated region of the human T-cell lymphotropic virus type 1 mRNA enables cap-independent translation initiation. J Virol 88:5936–5955

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40:4727–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuhn AN, Beibetaert T, Simon P, Vallazza B, Buck J, Davies BP, Tureci O, Sahin U (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12:347–361

    Article  CAS  PubMed  Google Scholar 

  69. Karikó K, Kuo A, Barnathan E (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 6:1092–1100

    Article  PubMed  Google Scholar 

  70. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Tureci O, Sahin U (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  71. Zinckgraf JW, Silbart LK (2003) Modulating gene expression using DNA vaccines with different 3′-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine 21:1640–1649

    Article  CAS  PubMed  Google Scholar 

  72. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  73. Bossi L, Ruth JR (1980) The influence of codon context on genetic code translation. Nature 286:123–127

    Article  CAS  PubMed  Google Scholar 

  74. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  75. Mauro VP, Chappell SA (2014) A critical analysis of codon optimization in human therapeutics. Trends Mol Med 20:604–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tarun SZ Jr, Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci U S A 94:9046–9051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Preiss T, Muckenthaler M, Hentze MW (1998) Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA 4:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wakiyama M, Imataka H, Sonenberg N (2000) Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol 10:1147–1150

    Article  CAS  PubMed  Google Scholar 

  79. Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomek W, Wollenhaupt K (2012) The “closed loop model” in controlling mRNA translation during development. Anim Reprod Sci 134:2–8

    Article  CAS  PubMed  Google Scholar 

  81. Archer SK, Shirokikh NE, Hallwirth CV, Beilharz TH, Preiss T (2015) Probing the closed-loop model of mRNA translation in living cells. RNA Biol 12:248–254

    Article  PubMed  PubMed Central  Google Scholar 

  82. Richter JD (2008) Breaking the code of polyadenylation-induced translation. Cell 132:335–337

    Article  CAS  PubMed  Google Scholar 

  83. Eckmann CR, Rammelt C, Wahle E (2011) Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2:348–361

    Article  CAS  PubMed  Google Scholar 

  84. Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A 109:19202–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su W, Slepenkov SV, Slevin MK, Lyons SM, Ziemniak M, Kowalska J, Darzynkiewicz E, Jemielity J, Marzluff WF, Rhoads RE (2013) mRNAs containing the histone 3′ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3′ end. RNA 19:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mullen TE, Marzluff WF (2008) Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 22:50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pascolo S (2008) Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 221–235

    Google Scholar 

  89. Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm Biotechnol 14:46–60

    CAS  PubMed  Google Scholar 

  90. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Tureci O, Sahin U (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708

    Article  CAS  PubMed  Google Scholar 

  91. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Tureci O, Sahin U (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Article  CAS  PubMed  Google Scholar 

  92. Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Husemann Y, Koslowski M, Huber C, Tureci O, Sahin U (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132–6142

    Article  CAS  PubMed  Google Scholar 

  93. Van Lint S, Goyvaerts C, Maenhout S, Goethals L, Disy A, Benteyn D, Pen J, Bonehill A, Heirman C, Breckpot K, Thielemans K (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671

    Article  PubMed  CAS  Google Scholar 

  94. Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, Horger MS, Maksimovic O, Stenzl A, Hoerr I, Rammensee HG, Holderried TA, Kanz L, Pascolo S, Brossart P (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, Kramps T (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30:1210–1216

    Article  CAS  PubMed  Google Scholar 

  96. Malone RW, Felgner PL, Verma IM (1989) Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A 86:6077–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D, Curiel DT (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55:1397–1400

    CAS  PubMed  Google Scholar 

  98. Granstein RD, Ding W, Ozawa H (2000) Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 114:632–636

    Article  CAS  PubMed  Google Scholar 

  99. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157

    Article  CAS  PubMed  Google Scholar 

  100. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    Article  CAS  PubMed  Google Scholar 

  101. Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG, Garbe C (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  CAS  PubMed  Google Scholar 

  102. Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, Sichi S, Niedzwiecki D, Boczkowski D, Gilboa E, Vieweg J (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807

    Article  CAS  PubMed  Google Scholar 

  103. Selmeczi D, Hansen TS, Met O, Svane IM, Larsen NB (2011) Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip. Biomed Microdevices 13:383–392

    Article  PubMed  Google Scholar 

  104. Lenz P, Bacot SM, Frazier-Jessen MR, Feldman GM (2003) Nucleoporation of dendritic cells: efficient gene transfer by electroporation into human monocyte-derived dendritic cells. FEBS Lett 538:149–154

    Article  CAS  PubMed  Google Scholar 

  105. Mandl CW, Aberle JH, Aberle SW, Holzmann H, Allison SL, Heinz FX (1998) In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat Med 4:1438–1440

    Article  CAS  PubMed  Google Scholar 

  106. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, O’Hagan DT, Singh M, Mason PW, Valiante NM, Dormitzer PR, Barnett SW, Rappuoli R, Ulmer JB, Mandl CW (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 109:14604–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, Casini D, Maione D, Qi ZQ, Gill JE, Caiazza NC, Urano J, Hubby B, Gao GF, Shu Y, De Gregorio E, Mandl CW, Mason PW, Settembre EC, Ulmer JB, Craig Venter J, Dormitzer PR, Rappuoli R, Geall AJ (2013) Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2, e52

    Article  PubMed  PubMed Central  Google Scholar 

  108. Uchida S, Itaka K, Uchida H, Hayakawa K, Ogata T, Ishii T, Fukushima S, Osada K, Kataoka K (2013) In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 8, e56220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nallagatla SR, Toroney R, Bevilacqua PC (2011) Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr Opin Struct Biol 21:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mathews MB, Korner A (1970) The inhibitory action of a mammalian viral RNA on the initiation of protein synthesis in a reticulocyte cell-free system. Eur J Biochem 17:339–343

    Article  CAS  PubMed  Google Scholar 

  111. Graziadei WD 3rd, Weideli H, Lengyel P (1973) Endonuclease of high specific activity in a purified mouse interferon preparation. Biochem Biophys Res Commun 54:40–46

    Article  CAS  PubMed  Google Scholar 

  112. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  113. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  CAS  PubMed  Google Scholar 

  114. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  115. Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  PubMed  CAS  Google Scholar 

  116. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  117. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Karikó K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39, e142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Katze MG (1992) The war against the interferon-induced dsRNA-activated protein kinase—Can viruses win? J Interferon Res 12:241–248

    Article  CAS  PubMed  Google Scholar 

  121. Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C, Tonelli M, Paessler S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond MS (2014) A viral RNA structural element alters host recognition of nonself RNA. Science 343:783–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Karikó K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Mays LE, Ammon-Treiber S, Mothes B, Alkhaled M, Rottenberger J, Muller-Hermelink ES, Grimm M, Mezger M, Beer-Hammer S, von Stebut E, Rieber N, Nurnberg B, Schwab M, Handgretinger R, Idzko M, Hartl D, Kormann MS (2013) Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. J Clin Invest 123:1216–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lui KO, Zangi L, Silva EA, Bu L, Sahara M, Li RA, Mooney DJ, Chien KR (2013) Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 23:1172–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Spater D, Xu H, Tabebordbar M, Gorbatov R, Sena B, Nahrendorf M, Briscoe DM, Li RA, Wagers AJ, Rossi DJ, Pu WT, Chien KR (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boros G, Miko E, Muramatsu H, Weissman D, Emri E, Rozsa D, Nagy G, Juhasz A, Juhasz I, van der Horst G, Horkay I, Remenyik E, Karikó K, Emri G (2013) Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential. J Photochem Photobiol B 129:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vonderheide RH, June CH (2014) Engineering T cells for cancer: our synthetic future. Immunol Rev 257:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  CAS  PubMed  Google Scholar 

  129. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  130. Fukuda S, Pelus LM (2006) Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5:1087–1098

    Article  CAS  PubMed  Google Scholar 

  131. Nair S, Aldrich AJ, McDonnell E, Cheng Q, Aggarwal A, Patel P, Williams MM, Boczkowski D, Lyerly HK, Morse MA, Devi GR (2013) Immunologic targeting of FOXP3 in inflammatory breast cancer cells. PLoS One 8, e53150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, Landry C, Yegorov O, Tcherepanova I, Monesmith T, Finke L, Sekaly RP (2010) Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 134:140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Allard SD, De Keersmaecker B, de Goede AL, Verschuren EJ, Koetsveld J, Reedijk ML, Wylock C, De Bel AV, Vandeloo J, Pistoor F, Heirman C, Beyer WE, Eilers PH, Corthals J, Padmos I, Thielemans K, Osterhaus AD, Lacor P, van der Ende ME, Aerts JL, van Baalen CA, Gruters RA (2012) A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 142:252–268

    Article  CAS  PubMed  Google Scholar 

  134. Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, Anguille S, Cools N, Goossens H, Mertens L, De Haes W, Wong J, Florence E, Vanham G, Berneman ZN (2012) mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26:F1–F12

    Article  PubMed  CAS  Google Scholar 

  135. Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    Article  CAS  PubMed  Google Scholar 

  136. Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci U S A 99:4495–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  142. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533

    Article  CAS  PubMed  Google Scholar 

  143. Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M (2014) Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345:1247391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Li M, Sancho-Martinez I, Izpisua Belmonte JC (2011) Cell fate conversion by mRNA. Stem Cell Res Ther 2:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yakubov E, Rechavi G, Rozenblatt S, Givol D (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 394:189–193

    Article  CAS  PubMed  Google Scholar 

  148. Plews JR, Li J, Jones M, Moore HD, Mason C, Andrews PW, Na J (2010) Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One 5, e14397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Warren L, Ni Y, Wang J, Guo X (2012) Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2:657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Mandal PK, Rossi DJ (2013) Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 8:568–582

    Article  PubMed  CAS  Google Scholar 

  151. Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, Muotri AR, Chi NC, Fu XD, Yu BD, Dowdy SF (2013) Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 13:246–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks all those who generously contributed their time and talent to write protocols for this volume as well as Dr. Anren Song, University of Texas Medical School, and Dr. Dixie Jones, Louisiana State University Health Sciences Center in Shreveport, for assistance with the scientific literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Rhoads .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rhoads, R.E. (2016). Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. In: Rhoads, R. (eds) Synthetic mRNA. Methods in Molecular Biology, vol 1428. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3625-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3625-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3623-6

  • Online ISBN: 978-1-4939-3625-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics