Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH

  • Miroslava KarafiátováEmail author
  • Jan Bartoš
  • Jaroslav Doležel
Part of the Methods in Molecular Biology book series (MIMB, volume 1429)


Fluorescence in situ hybridization (FISH) is a widely used method to localize DNA sequences on mitotic and meiotic chromosomes and interphase nuclei. It was developed in early 1980s and since then it has contributed to numerous studies and important discoveries. Over the decades, the protocol was modified for ease of use, allowing for localizing multiple probes simultaneously and increasing its sensitivity and specificity. Despite the continuous improvements, the ability to detect short single-copy sequences of only a few kilobases or less, such as genes, remains limited. Here, we provide a detailed protocol for detection of short, single- or low-copy sequences on plant mitotic metaphase chromosomes.

Key words

Cell cycle synchronization Cytogenetic mapping Fluorochrome Low-copy probe Mitotic metaphase chromosomes Probe purification Post-fixation Quantum yield 



We thank Zdeňka Dubská for technical assistance with cell cycle synchronization. Barley fl-cDNA clones were kindly provided by Kazuhiro Sato (Okayama University, Japan). This work was supported by a grant award LO1204 from the National Program of Sustainability I.


  1. 1.
    Dear PH (2001) Genome mapping. In: eLS. John Wiley & Sons Ltd, Chichester. Nature Publishing Group, London, UK, pp 1–7, www.els.netGoogle Scholar
  2. 2.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. 3.
    Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100Google Scholar
  4. 4.
    Schnable P, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  5. 5.
    Gordo SM, Pinheiro DG, Moreira EC et al (2012) High-throughput sequencing of black pepper root transcriptome. BMC Plant Biol 12:168CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Varshney RK, Kudapa H, Roorkiwal M et al (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820CrossRefPubMedGoogle Scholar
  7. 7.
    Faino L, Thomma BP (2014) Get your high-quality low-cost genome sequence. Trends Plant Sci 19:288–291CrossRefPubMedGoogle Scholar
  8. 8.
    Karafiátová M, Bartoš J, Kopecký D et al (2013) Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res 21:739–751CrossRefPubMedGoogle Scholar
  9. 9.
    Lou Q, Zhang Y, He Y et al (2014) Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 78:169–179CrossRefPubMedGoogle Scholar
  10. 10.
    Poursarebani N, Ma L, Schmutzer T et al (2014) FISH mapping for physical map improvement in the large genome of barley: a case study on chromosome 2H. Cytogenet Genome Res 143:275–279PubMedGoogle Scholar
  11. 11.
    Shearer LA, Anderson LK, de Jong H et al (2014) Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 30:1395–1405CrossRefGoogle Scholar
  12. 12.
    Trask B, Trask B (1999) Fluorescence In situ Hybridization. In: Birren B, Green ED, Hidžer P, Klapholz S, Myers RM, Riethman H, Roskams J, Birren B, Green ED, Hidžer P, Klapholz S, Myers RM, Riethman H, Roskams J (eds) Genome analysis (a laboratory manual)-Mapping genome, vol 4. Cold Spring Harbor Laboratory Press, USA, pp 303–407Google Scholar
  13. 13.
    Cheng Z, Buell CR, Wing RA et al (2002) Resolution of fluorescence in situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 10:379–387CrossRefPubMedGoogle Scholar
  14. 14.
    de Jong JH, Fransz P, Zabel P (1999) High-resolution FISH in plants-techniques and applications. Trends Plant Sci 4:258–263CrossRefGoogle Scholar
  15. 15.
    Schubert V, Meister A, Tsujimoto H et al (2011) Similar rye A and B chromosome organization in meristematic and differentiated interphase nuclei. Chromosome Res 19:645–655CrossRefPubMedGoogle Scholar
  16. 16.
    Valárik M, Bartoš J, Kovářová P et al (2004) High resolution FISH on super-stretched flow-sorted chromosomes. Plant J 27:940–950CrossRefGoogle Scholar
  17. 17.
    Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  18. 18.
    Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedPubMedCentralGoogle Scholar
  19. 19.
    Jiang J, Gill B, Wang G-L et al (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci 92:4487–4491CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Szakács E, Molnár-Láng M (2010) Identification of new winter wheat - winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole 'Martonvásári 9 kr1' - 'Igri' addition set. Genome 53:35–44Google Scholar
  21. 21.
    Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611CrossRefPubMedGoogle Scholar
  22. 22.
    Lysák M, Fransz PF, Ali BH et al (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697CrossRefPubMedGoogle Scholar
  23. 23.
    Gan Y, Chen D, Liu F et al (2011) Individual chromosome assignment and chromosomal collinearity in Gossypium thurberi, G trilobum and D subgenome of G. barbadense revealed by BAC-FISH. Genes Genet Syst 86:165–174Google Scholar
  24. 24.
    Cheng Z, Presting GG, Buell CR et al (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosomes 10 of rice. Genetics 157:1749–1757PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wolny E, Fidyk W, Hasterok R (2013) Karyotyping of Brachypodium pinnatum (2n = 18) chromosomes using cross-species BAC-FISH. Genome 56:239–243Google Scholar
  26. 26.
    Zhang P, Li W, Friebe B et al (2004) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987CrossRefPubMedGoogle Scholar
  27. 27.
    Suzuki G, Ogaki Y, Hokimoto N et al (2011) Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Rep 31:621–628CrossRefPubMedGoogle Scholar
  28. 28.
    Janda J, Šafář J, Kubaláková M et al (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986CrossRefPubMedGoogle Scholar
  29. 29.
    Schnabel E, Kulikova O, Penmetsa RV et al (2003) An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome 46:665–672CrossRefPubMedGoogle Scholar
  30. 30.
    Tang X, de Boer JM, van Eck HJ et al (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:399–415CrossRefGoogle Scholar
  31. 31.
    Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization. Chromosome Res 3:94–100CrossRefPubMedGoogle Scholar
  33. 33.
    Yang K, Zhang H, Converse R et al (2011) Fluorescence in situ hybridization on plant extended chromatin DNA fibers for single-copy and repetitive DNA sequences. Plant Cell Rep 30:1779–1786CrossRefPubMedGoogle Scholar
  34. 34.
    Kato A, Vega JM, Han FP et al (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154CrossRefPubMedGoogle Scholar
  35. 35.
    Birnbiom HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100:243–255CrossRefGoogle Scholar
  36. 36.
    Fischer JA, Favreau MB (1991) Plasmid purification by phenol extraction from guanidinium thiocyanate solution: development of an automated protocol. Anal Biochem 194:309–315CrossRefGoogle Scholar
  37. 37.
    Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers Limited, OxfordGoogle Scholar
  38. 38.
    Mirzaghaderi G (2009) A simple metaphase chromosome preparation from meristematic root tips cell of wheat for karyotyping or in situ hybridization. Afr J Biotechnol 9:314–318Google Scholar
  39. 39.
    Sato K, Shin-I T, Seki M et al (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kato A, Albert PS, Vega JM et al (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Miroslava Karafiátová
    • 1
    Email author
  • Jan Bartoš
    • 1
  • Jaroslav Doležel
    • 1
  1. 1.Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic

Personalised recommendations