Skip to main content

An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2006) Primary ear and hearing care. Training resource. Advanced level. World Health Organization

    Google Scholar 

  2. WHO (2008) The World Health Report

    Google Scholar 

  3. Gates GA, Cooper JC (1991) Incidence of hearing decline in the elderly. Acta Otolaryngol 111(2):240–248

    Article  CAS  PubMed  Google Scholar 

  4. Ruben RJ (2000) Redefining the survival of the fittest: communication disorders in the 21st century. Laryngoscope 110(2 Pt 1):241–245

    Article  CAS  PubMed  Google Scholar 

  5. Zou J, Zhang W, Poe D, Zhang Y, Ramadan UA, Pyykko I (2010) Differential passage of gadolinium through the mouse inner ear barriers evaluated with 4.7T MRI. Hear Res 259(1–2):36–43

    Article  CAS  PubMed  Google Scholar 

  6. Zou J, Yoshida T, Ramadan UA, Pyykko I (2011) Dynamic enhancement of the rat inner ear after ultra-small-volume administration of Gd-DOTA to the medial wall of the middle ear cavity. ORL J Otorhinolaryngol Relat Spec 73(5):275–281

    Article  PubMed  Google Scholar 

  7. Zou J, Poe D, Ramadan UA, Pyykko I (2012) Oval window transport of Gd-dOTA from rat middle ear to vestibulum and scala vestibuli visualized by in vivo magnetic resonance imaging. Ann Otol Rhinol Laryngol 121(2):119–128

    Article  PubMed  Google Scholar 

  8. Nakashima T, Naganawa S, Sugiura M et al (2007) Visualization of endolymphatic hydrops in patients with Meniere’s disease. Laryngoscope 11(3):415–420

    Article  Google Scholar 

  9. Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T (2010) Visualization of endolymphatic hydrops in Meniere’s disease with single-dose intravenous gadolinium-based contrast media using heavily T(2)-weighted 3D-FLAIR. Magn Reson Med Sci 9(4):237–242

    Article  PubMed  Google Scholar 

  10. Zou J, Pyykko I (2015) Enhanced oval window and blocked round window passages for middle-inner ear transportation of gadolinium in guinea pigs with a perforated round window membrane. Eur Arch Otorhinolaryngol 272(2):303–309

    Article  PubMed  Google Scholar 

  11. Watanabe T, Frahm J, Michaelis T (2008) Manganese-enhanced MRI of the mouse auditory pathway. Magn Reson Med 60(1):210–212

    Article  PubMed  Google Scholar 

  12. Zou J, Pyykko I (2015) Calcium metabolism profile in rat inner ear indicated by MRI after tympanic medial wall administration of manganese chloride. Ann Otol Rhinol Laryngol 125(1):53–62

    Google Scholar 

  13. Jin SU, Lee JJ, Hong KS et al (2013) Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway. Magn Reson Imaging 31(7):1143–1149

    Article  CAS  PubMed  Google Scholar 

  14. Groschel M, Hubert N, Muller S, Ernst A, Basta D (2014) Age-dependent changes of calcium related activity in the central auditory pathway. Exp Gerontol 58:235–243

    Article  PubMed  CAS  Google Scholar 

  15. Izumikawa M, Minoda R, Kawamoto K et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11(3):271–276

    Article  CAS  PubMed  Google Scholar 

  16. Kawamoto K, Yagi M, Stover T, Kanzaki S, Raphael Y (2003) Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF. Mol Ther 4:484–492

    Article  CAS  Google Scholar 

  17. Shou J, Zheng JL, Gao WQ (2003) Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci 23(2):169–179

    Article  CAS  PubMed  Google Scholar 

  18. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF (2010) Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer 10:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Miller VM, Hunter LW, Chu K, Kaul V, Squillace PD, Lieske JC, Jayachandran M (2009) Biologic nanoparticles and platelet reactivity. Nanomedicine (Lond) 4(7):725–733

    Article  CAS  Google Scholar 

  20. Theoharis S, Krueger U, Tan PH, Haskard DO, Weber M, George AJ (2009) Targeting gene delivery to activated vascular endothelium using anti E/P-selectin antibody linked to PAMAM dendrimers. J Immunol Methods 343(2):79–90

    Article  CAS  PubMed  Google Scholar 

  21. Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT (2008) Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 60(15):1583–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Chui WK, Ho PC (2010) Integrin targeted drug and gene delivery. Expert Opin Drug Deliv 7(2):159–171

    Article  CAS  PubMed  Google Scholar 

  23. Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31(9):2574–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong CY, Shi S, Dong PW et al (2009) In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) copolymer. BMC Biotechnol 9:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Albornoza C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15

    Article  CAS  Google Scholar 

  26. Li X, Ding L, Xu Y, Wang Y, Ping Q (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373(1–2):116–123

    Article  CAS  PubMed  Google Scholar 

  27. Anabousi S, Laue M, Lehr CM, Bakowsky U, Ehrhardt C (2005) Assessing transferrin modification of liposomes by atomic force microscopy and transmission electron microscopy. Eur J Pharm Biopharm 60(2):295–303

    Article  CAS  PubMed  Google Scholar 

  28. Pante N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13(2):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou J, Sood R, Zhang Y, Kinnunen PK, Pyykko I (2014) Pathway and morphological transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery system. Nanomedicine (Lond) 9(14):2143–2155

    Article  CAS  Google Scholar 

  30. Deda DK, Uchoa AF, Carita E, Baptista MS, Toma HE, Araki K (2009) A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int J Pharm 376(1–2):76–83

    Article  CAS  PubMed  Google Scholar 

  31. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880

    Article  CAS  PubMed  Google Scholar 

  32. Heurtault B, Saulnier P, Pech B, Venier-Julienne MC, Proust JE, Phan-Tan-Luu R, Benoit JP (2003) The influence of lipid nanocapsule composition on their size distribution. Eur J Pharm Sci 18(1):55–61

    Article  CAS  PubMed  Google Scholar 

  33. Zou J, Saulnier P, Perrier T, Zhang Y, Manninen T, Toppila E, Pyykko I (2008) Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J Biomed Mater Res B Appl Biomater 87(1):10–18

    Article  PubMed  CAS  Google Scholar 

  34. Scheper V, Wolf M, Scholl M et al (2009) Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond) 4(6):623–635

    Article  CAS  Google Scholar 

  35. Vonarbourg A, Saulnier P, Passirani C, Benoit JP (2005) Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis 26(11):2066–2075

    Article  CAS  PubMed  Google Scholar 

  36. Lai WF, Lin MC (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134(3):158–168

    Article  CAS  PubMed  Google Scholar 

  37. Khan TA, Peh KK, Ch'ng HS (2002) Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharm Sci 5(3):205–212

    CAS  PubMed  Google Scholar 

  38. Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25(22):5293–5301

    Article  CAS  PubMed  Google Scholar 

  39. Corsi K, Chellat F, Yahia L, Fernandes JC (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24(7):1255–1264

    Article  CAS  PubMed  Google Scholar 

  40. Mao HQ, Roy K, Troung-Le VL et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70(3):399–421

    Article  CAS  PubMed  Google Scholar 

  41. Huang DM, Hung Y, Ko BS et al (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19(14):2014–2016

    CAS  PubMed  Google Scholar 

  42. Ishii T, Okahata Y, Sato T (2001) Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta 1514(1):51–64

    Article  CAS  PubMed  Google Scholar 

  43. Guang Liu W, De Yao K (2002) Chitosan and its derivatives—a promising non-viral vector for gene transfection. J Control Release 83(1):1–11

    Article  PubMed  Google Scholar 

  44. Huang M, Fong CW, Khor E, Lim LY (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106(3):391–406

    Article  CAS  PubMed  Google Scholar 

  45. Lee KY, Kwon IC, Kim YH, Jo WH, Jeong SY (1998) Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 51(2-3):213–220

    Article  CAS  PubMed  Google Scholar 

  46. Koping-Hoggard M, Varum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11(19):1441–1452

    Article  CAS  PubMed  Google Scholar 

  47. Hsiao JK, Tsai CP, Chung TH et al (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452

    Article  CAS  PubMed  Google Scholar 

  48. Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 4(44):8438–8441

    Article  CAS  Google Scholar 

  49. Lin Y-S, Wu S-H, Hung Y et al (2006) Multifunctional composite nanoparticles: magnetic, luminescent and mesoporous. ChemMater 18:5170–5172

    CAS  Google Scholar 

  50. Liu HM, Wu SH, Lu CW et al (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4(5):619–626

    Article  CAS  PubMed  Google Scholar 

  51. Taylor KM, Kim JS, Rieter WJ, An H, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155

    Article  CAS  PubMed  Google Scholar 

  52. Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, Mou CY (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 9(1):53–57

    Article  CAS  PubMed  Google Scholar 

  53. Brevet D, Gary-Bobo M, Raehm L et al (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun (Camb) 12:1475–1477

    Article  CAS  Google Scholar 

  54. Lebret VRL, Durand JO, Smaihi M et al (2008) Surface functionalization of two-photon dye-doped mesoporous silica nanoparticles with folic acid: cytotoxicity studies with HeLa and MCF-7 cancer cells. J Sol-Gel Sci Technol 48:32–39

    Article  CAS  Google Scholar 

  55. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 359(1–2):280–287

    Article  CAS  PubMed  Google Scholar 

  57. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linden M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206

    Article  CAS  PubMed  Google Scholar 

  58. Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Linden M (2009) Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett 9(9):3308–3311

    Article  CAS  PubMed  Google Scholar 

  59. Tsai C-P, Chen CY, Hung Y, Chang F-H, Mou C-Y (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19:5737–5743

    Article  CAS  Google Scholar 

  60. Lin Y-S, Tsai C-P, Hung H-Y et al (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573

    Article  CAS  Google Scholar 

  61. Giri S, Trewyn BG, Lin VS (2007) Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine (Lond) 2(1):99–111

    Article  CAS  Google Scholar 

  62. Mortera R, Vivero-Escoto J, Slowing II, Garrone E, Onida B, Lin VS (2009) Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chem Commun (Camb) 22:3219–3221

    Article  CAS  Google Scholar 

  63. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  PubMed  Google Scholar 

  64. Slowing BG, Trewyn S, Giri V, Lin S-Y (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    Article  CAS  Google Scholar 

  65. Liong M, Angelos S, Choi E, Patel K, Stoddart JF, Zink JI (2009) Mesostructured multifunctional nanoparticles for imaging and drug delivery. J Mater Chem 19:6251–6257

    Article  CAS  Google Scholar 

  66. Liu J, Stace-Naughton A, Jiang X, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131(4):1354–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    Article  CAS  PubMed  Google Scholar 

  68. Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117(1–2):1–9

    CAS  Google Scholar 

  69. Johnston AH, Dalton PD, Newman TA (2010) Polymersomes, smaller than you think: ferrocene as a TEM probe to determine core structure. J Nanopart Res 12(6):1997–2001

    Article  CAS  Google Scholar 

  70. Ghoroghchian PP, Lin JJ, Brannan AK, Frail PR, Bates FS, Therien MJ, Hammer DA (2006) Quantitative membrane loading of polymer vesicles. Soft Matter 2(11):973–980

    Article  CAS  Google Scholar 

  71. Lomas H, Canton I, MacNeil S et al (2007) Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 19(23):4238–4243

    Article  CAS  Google Scholar 

  72. Christian NA, Milone MC, Ranka SS et al (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18(1):31–40

    Article  CAS  PubMed  Google Scholar 

  73. Roy S, Johnston AH, Newman TA et al (2010) Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery. Int J Pharm 390(2):214–224

    Article  CAS  PubMed  Google Scholar 

  74. Zhang W, Zhang Y, Lobler M, Schmitz KP, Ahmad A, Pyykko I, Zou J (2011) Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomed 6:535–546

    Article  CAS  Google Scholar 

  75. Surovtseva E, Johnston A, Zhang W et al (2011) Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int J Pharm. 2012 Mar 15;424(1–2):121–7. Epub 2011 Dec 30

    Google Scholar 

  76. Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15(7):2525–2533

    Article  CAS  Google Scholar 

  77. Roy S, Glueckert R, Johnston AH, Perrier T, Bitsche M, Newman TA, Saulnier P, Schrott-Fischer A (2012) Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond). 7(1):55-63. doi: 10.2217/nnm.11.84. Epub 2011 Nov 22

    Google Scholar 

  78. Liu JK, Tenga QS, Garrity-Moses M, Federici T, Tanase D, Imperiale MJ, Boulis NM (2005) A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol Dis 19(3):407–418

    Article  PubMed  CAS  Google Scholar 

  79. Buckiová D, Ranjan S, Newman TA et al (2011) Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine (Lond). 2012 Sep;7(9):1339–54. Epub 2012 Apr 4

    Google Scholar 

  80. Scholl M, Nguyen TQ, Bruchmann B, Klok H-A (2007) The thermal polymerization of amino acids revisited; Synthesis and structural characterization of hyperbranched polymers from L-lysine. J Polym Sci Part A Polym Chem 45:5494–5508

    Article  CAS  Google Scholar 

  81. Hawker CJ, Lee R, Fréchet JMJ (1991) The one-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113:4303–4313

    Article  Google Scholar 

  82. Hölter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polymer 48:30–35

    Article  Google Scholar 

  83. Zhang Y, Zhang W, Johnston AH, Newman TA, Pyykkö I, Zou J (2011) Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int J Nanomed. 2012;7:1015–1022.

    Google Scholar 

  84. Qin J, Jo YS, Ihm JE, Kim DK, Muhammed M (2005) Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles. Langmuir 21:9346–9351

    Article  CAS  PubMed  Google Scholar 

  85. Jo JS, Kim M-C, Kim DK, Kim C-J, Jeong Y-K, Kim K-J, Muhammed M (2004) Mathematical modeling and in-vitro experiment for the controlled-release of indomethacin-loaded PLA-PEO nanospheres. Nanotechnology 15:1186–1194

    Article  CAS  Google Scholar 

  86. Kabanov AV, Vinogradov SV (2009). In: Angew Chem Int Ed (ed) vol 48, p 14

    Google Scholar 

  87. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–447

    Article  CAS  Google Scholar 

  88. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from fundamentals to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  89. Hennik WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Article  Google Scholar 

  90. Groll J, Singh S, Albrecht K, Möller M (2009) Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J Polymer Sci Part A Polymer Chem 47(20):5543–5549

    Article  CAS  Google Scholar 

  91. Wattendorf U, Merkle HP (2008) PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 97(11):4655–4669

    Article  CAS  PubMed  Google Scholar 

  92. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  93. He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092

    Article  CAS  PubMed  Google Scholar 

  94. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  95. Gref R, Luck M, Quellec P et al (2000) “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313

    Article  CAS  PubMed  Google Scholar 

  96. Schimmang T, Minichiello L, Vazquez E, San Jose I, Giraldez F, Klein R, Represa J (1995) Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets. Development 121(10):3381–3391

    CAS  PubMed  Google Scholar 

  97. Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65(1–2):69–78

    Article  CAS  PubMed  Google Scholar 

  98. Zou JZY, Zhang W, Ranjan S, Sood R, Mikhailov A, Kinnunen P, Pyykkö I (2009) Internalization of liposome nanoparticles functionalized with TrkB ligand in rat cochlear cell populations. Eur J Nanomed 3:8–14

    Google Scholar 

  99. Bachmann G, Su J, Zumegen C, Wittekindt C, Michel O (2001) Permeability of the round window membrane for prednisolone-21-hydrogen succinate. Prednisolone content of the perilymph after local administration vs. systemic injection. HNO 49(7):538–542

    Article  CAS  PubMed  Google Scholar 

  100. Parnes LS, Sun AH, Freeman DJ (1999) Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application. Laryngoscope 109:1–17

    Article  CAS  PubMed  Google Scholar 

  101. Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E, Baredes S (2000) Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg 122(4):521–528

    CAS  PubMed  Google Scholar 

  102. Borkholder DA (2008) State-of-the-art mechanisms of intracochlear drug delivery. Curr Opin Otolaryngol Head Neck Surg 16(5):472–477

    Article  PubMed  Google Scholar 

  103. Chen G, Hou SX, Hu P, Hu QH, Guo DD, Xiao Y (2008) In vitro dexamethasone release from nanoparticles and its pharmacokinetics in the inner ear after administration of the drug-loaded nanoparticles via the round window. Nan Fang Yi Ke Da Xue Xue Bao 28(6):1022–1024

    PubMed  Google Scholar 

  104. Zou J, Pyykko I, Bretlau P, Klason T, Bjelke B (2003) In vivo visualization of endolymphatic hydrops in guinea pigs: magnetic resonance imaging evaluation at 4.7 tesla. Ann Otol Rhinol Laryngol 112(12):1059–1065

    Article  PubMed  Google Scholar 

  105. Zou J, Ramadan UA, Pyykko I (2010) Gadolinium uptake in the rat inner ear perilymph evaluated with 4.7 T MRI: A comparison between transtympanic injection and gelatin sponge-based diffusion through the round window membrane. Otol Neurotol 31(4):637–641

    PubMed  Google Scholar 

  106. Nakashima T, Naganawa S, Katayama N, Teranishi M, Nakata S, Sugiura M, Sone M, Kasai S, Yoshioka M, Yamamoto M (2009) Clinical significance of endolymphatic imaging after intratympanic gadolinium injection. Acta Otolaryngol Suppl 560:9–14

    Article  PubMed  Google Scholar 

  107. Hahn H, Kammerer B, DiMauro A, Salt AN, Plontke SK (2006) Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration. Hear Res 21(1–2):236–244

    Article  CAS  Google Scholar 

  108. Mikulec AA, Plontke SK, Hartsock JJ, Salt AN (2009) Entry of substances into perilymph through the bone of the otic capsule after intratympanic applications in guinea pigs: implications for local drug delivery in humans. Otol Neurotol 30(2):131–138

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tanuma A, Sato H, Takeda T et al (2007) Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent’s disease. Nephron Physiol 107(4):87–97

    Article  CAS  Google Scholar 

  110. Praetorius M (2007) Active middle ear implants: more than “just” a hearing aid. HNO 55(9):681–683

    Article  CAS  PubMed  Google Scholar 

  111. Witte MC, Kasperbauer JL (2000) Round window membrane permeability to transforming growth factor-alpha: an in vitro study. Otolaryngol Head Neck Surg 123(1 Pt 1):91–96

    Article  CAS  PubMed  Google Scholar 

  112. Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K, Liu J, Gibson D, Dormer KJ (2006) Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurootol 11(2):123–133

    Article  PubMed  Google Scholar 

  113. Nomura Y (1984) Otological significance of the round window, vol 33. Advances in oto-rhino-laryngology, Kargert, Basel

    Google Scholar 

  114. Yoshihara T, Kaname H, Ishii T, Igarashi M (1995) Subepithelial fiber components of the round window membrane of the guinea pig: an ultrastructural and immunohistochemical study. ORL J Otorhinolaryngol Relat Spec 57(3):115–121

    Article  CAS  PubMed  Google Scholar 

  115. Engel F, Blatz R, Kellner J, Palmer M, Weller U, Bhadki S (1995) Breakdown of the round window membrane permeability barrier evoked by streptolysin O: possible etiologic role in development of sensorineural hearing loss in acute otitis media. Infect Immun 63(4):1305–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zou J, Poe D, Bjelke B, Pyykko I (2009) Visualization of inner ear disorders with MRI in vivo: from animal models to human application. Acta Otolaryngol Suppl 560:22–31

    Article  PubMed  Google Scholar 

  117. Banerji SK, Hayes MA (2007) Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes. Langmuir 23(6):3305–3313

    Article  CAS  PubMed  Google Scholar 

  118. Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M (2000) Endosomes, lysosomes: their implication in gene transfer. Adv Drug Deliv Rev 41(2):201–208

    Article  CAS  PubMed  Google Scholar 

  119. De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284

    Article  PubMed  CAS  Google Scholar 

  120. Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Muller RH, Rosenecker J (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21(9):1662–1669

    Article  CAS  PubMed  Google Scholar 

  121. Jarver P, Langel U (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9(9):395–402

    Article  PubMed  CAS  Google Scholar 

  122. Lindsay MA (2002) Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2(5):587–594

    Article  CAS  PubMed  Google Scholar 

  123. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280(15):15300–15306

    Article  CAS  PubMed  Google Scholar 

  124. Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 12(2):51–63

    Article  CAS  PubMed  Google Scholar 

  125. Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10(6):1011–1022

    Article  CAS  PubMed  Google Scholar 

  126. Rinne J, Albarran B, Jylhava J et al (2007) Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnol 7:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 19(4):882–890

    Article  CAS  PubMed  Google Scholar 

  128. Löbler M, Rohm H, Perrier T et al (2012) Nanoparticle mediated drug delivery. End report from NanoEar Consortium. 120 p

    Google Scholar 

  129. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2(6):567–571

    Article  CAS  Google Scholar 

  130. Sugunan A, Jafri HM, Qin J, Blom T, Toprak MS, Leifer K, Muhammed MJ (2010) Low-temperature synthesis of photoconducting CdTe nanotetrapods. J Mater Chem 20:1208–1214

    Article  CAS  Google Scholar 

  131. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl 46(25):4630–4660

    Article  CAS  PubMed  Google Scholar 

  132. Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C (2006) In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 29(5):367–374

    Article  CAS  PubMed  Google Scholar 

  133. Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Kang CS, Pu PY, Betbeder D (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379(2):285–292

    Article  CAS  PubMed  Google Scholar 

  134. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  PubMed  Google Scholar 

  135. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  CAS  PubMed  Google Scholar 

  136. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Google Scholar 

  137. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57(5):755–767

    Article  CAS  PubMed  Google Scholar 

  138. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612

    Article  CAS  PubMed  Google Scholar 

  139. Mousavi SA, Malerod L, Berg T, Kjeken R (2004) Clathrin-dependent endocytosis. Biochem J 377(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Widera A, Norouziyan F, Shen WC (2003) Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 55(11):1439–1466

    Article  CAS  PubMed  Google Scholar 

  141. Gaborik Z, Hunyady L (2004) Intracellular trafficking of hormone receptors. Trends Endocrinol Metab 15(6):286–293

    Article  CAS  PubMed  Google Scholar 

  142. Laakkonen JP, Makela AR, Kakkonen E et al (2009) Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLoS One 4(4):e5093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28(18):2876–2884

    Article  CAS  PubMed  Google Scholar 

  144. Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139(2):127–132

    Article  CAS  PubMed  Google Scholar 

  145. Li W, Nicol F, Szoka FC Jr (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56(7):967–985

    Article  CAS  PubMed  Google Scholar 

  146. Shin J, Shum P, Thompson DH (2003) Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J Control Release 91(1–2):187–200

    Article  CAS  PubMed  Google Scholar 

  147. Ahmad A, Ranjan S, Zhang W, Zou J, Pyykko I, Kinnunen PK (2015) Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Biochim Biophys Acta 1848(2):544–553

    Article  CAS  PubMed  Google Scholar 

  148. Wolff JA, Rozema DB (2008) Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther 16:16–29

    Article  CAS  Google Scholar 

  149. Rozema DB, Ekena K, Lewis DL, Loomis AG, Wolff JA (2003) Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug Chem 14(1):51–57

    Article  CAS  PubMed  Google Scholar 

  150. Meyer M, Zintchenko A, Ogris M, Wagner E (2007) A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. J Gene Med 9(9):797–805

    Article  CAS  PubMed  Google Scholar 

  151. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14(2):412–419

    Article  CAS  PubMed  Google Scholar 

  152. Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E (2007) An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug Chem 18(4):1218–1225

    Article  CAS  PubMed  Google Scholar 

  153. Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104(32):12982–12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27(1):27–33

    Article  CAS  PubMed  Google Scholar 

  155. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(3):1625–1629

    Article  CAS  PubMed  Google Scholar 

  156. Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA (1999) A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci 112(Pt 12):2033–2041

    CAS  PubMed  Google Scholar 

  157. Mannisto M, Reinisalo M, Ruponen M, Honkakoski P, Tammi M, Urtti A (2007) Polyplex-mediated gene transfer and cell cycle: effect of carrier on cellular uptake and intracellular kinetics, and significance of glycosaminoglycans. J Gene Med 9(6):479–487

    Article  CAS  PubMed  Google Scholar 

  158. Tachibana R, Ide N, Shinohara Y, Harashima H, Hunt CA, Kiwada H (2004) An assessment of relative transcriptional availability from nonviral vectors. Int J Pharm 270(1–2):315–321

    Article  CAS  PubMed  Google Scholar 

  159. Hama S, Akita H, Iida S, Mizuguchi H, Harashima H (2007) Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res 35(5):1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Carlisle RC, Bettinger T, Ogris M, Hale S, Mautner V, Seymour LW (2001) Adenovirus hexon protein enhances nuclear delivery and increases transgene expression of polyethylenimine/plasmid DNA vectors. Mol Ther 4(5):473–483

    Article  CAS  PubMed  Google Scholar 

  161. Dean DA, Strong DD, Zimmer WE (2005) Nuclear entry of nonviral vectors. Gene Ther 12(11):881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273(13):7507–7511

    Article  CAS  PubMed  Google Scholar 

  163. Antoniou MN, Skipper KA, Anakok O (2013) Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 24(4):363–374

    Article  CAS  PubMed  Google Scholar 

  164. Kim A, Pyykko I (2011) Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool. Mol Cell Biochem 354(1–2):301–309

    Article  CAS  PubMed  Google Scholar 

  165. Pledger DW, Coates CJ (2005) Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti. Insect Biochem Mol Biol 35(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  166. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97(21):11403–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Horie K, Yusa K, Yae K et al (2003) Characterization of sleeping beauty transposition and its application to genetic screening in mice. Mol Cell Biol 23(24):9189–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  169. Fraser MJ, Smith GE, Summers MD (1983) Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J Virol 47(2):287–300

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169

    Article  CAS  PubMed  Google Scholar 

  171. Lobo N, Li X, Fraser MJ Jr (1999) Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261(4–5):803–810

    Article  CAS  PubMed  Google Scholar 

  172. Thibault ST, Singer MA, Miyazaki WY et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Na Genet 36(3):283–287

    Article  CAS  Google Scholar 

  173. Elick TA, Bauser CA, Fraser MJ (1996) Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98(1):33–41

    Article  CAS  PubMed  Google Scholar 

  174. Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5(2):141–151

    Article  CAS  PubMed  Google Scholar 

  175. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483

    Article  CAS  PubMed  Google Scholar 

  176. Wu S, Ying G, Wu Q, Capecchi MR (2007) Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 39(7):922–930

    Article  CAS  PubMed  Google Scholar 

  177. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lacoste A, Berenshteyn F, Brivanlou AH (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5(3):332–342

    Article  CAS  PubMed  Google Scholar 

  179. Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20(11):1880–1882

    Article  CAS  PubMed  Google Scholar 

  180. Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103(41):15008–15013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13(6):1031–1049

    Article  CAS  PubMed  Google Scholar 

  182. Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW (2007) Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 15(4):801–809

    CAS  PubMed  Google Scholar 

  183. Skipper KA, Andersen PR, Sharma N, Mikkelsen JG (2013) DNA transposon-based gene vehicles—scenes from an evolutionary drive. J Biomed Sci 20:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Plontke SK, Mynatt R, Gill RM, Borgmann S, Salt AN (2007) Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane. Laryngoscope 117(7):1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tan BT, Foong KH, Lee MM, Ruan R (2008) Polyethylenimine-mediated cochlear gene transfer in guinea pigs. Arch Otolaryngol Head Neck Surg 134(8):884–891

    Article  PubMed  Google Scholar 

  186. Jero J, Mhatre AN, Tseng CJ et al (2001) Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 12(5):539–548

    Article  CAS  PubMed  Google Scholar 

  187. Crumling MA, Raphael Y (2006) Manipulating gene expression in the mature inner ear. Brain Res 109(1):265–269

    Article  CAS  Google Scholar 

  188. Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18(19):7811–7821

    CAS  PubMed  Google Scholar 

  189. Frolov MV, Dyson NJ (2004) Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117(Pt 11):2173–2181

    Article  CAS  PubMed  Google Scholar 

  190. Taylor R, Forge A (2005) Developmental biology. Life after deaf for hair cells? Science 307(5712):1056–1058

    Article  CAS  PubMed  Google Scholar 

  191. Lowenheim H, Furness DN, Kil J et al (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci U S A 96(7):4084–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126(8):1581–1590

    CAS  PubMed  Google Scholar 

  193. White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441(7096):984–987

    Article  CAS  PubMed  Google Scholar 

  194. Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26(2):550–558

    Article  CAS  PubMed  Google Scholar 

  195. Murphy JA, Clarke DB (2006) Target-derived neurotrophins may influence the survival of adult retinal ganglion cells when local neurotrophic support is disrupted: implications for glaucoma. Med Hypotheses 67(5):1208–1212

    Article  CAS  PubMed  Google Scholar 

  196. Horton CD, Qi Y, Chikaraishi D, Wang JK (2001) Neurotrophin-3 mediates the autocrine survival of the catecholaminergic CAD CNS neuronal cell line. J Neurochem 76(1):201–209

    Article  CAS  PubMed  Google Scholar 

  197. Ito J, Endo T, Nakagawa T, Kita T, Kim TS, Iguchi F (2005) A new method for drug application to the inner ear. ORL J Otorhinolaryngol Relat Spec 67(5):272–275

    Article  PubMed  Google Scholar 

  198. Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y (2010) Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 223(2):464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rask-Andersen H, Bostrom M, Gerdin B, Kinnefors A, Nyberg G, Engstrand T, Miller JM, Lindholm D (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203(1–2):180–191

    Article  CAS  PubMed  Google Scholar 

  200. Bostrom M, Khalifa S, Bostrom H, Liu W, Friberg U, Rask-Andersen H (2010) Effects of neurotrophic factors on growth and glial cell alignment of cultured adult spiral ganglion cells. Audiol Neurootol 15(3):175–186

    Article  PubMed  CAS  Google Scholar 

  201. Oshima K, Senn P, Heller S (2009) Isolation of sphere-forming stem cells from the mouse inner ear. Meth Mol Biol 493:141–162

    Article  CAS  Google Scholar 

  202. Green SH, Bailey E, Wang Q, Davis RL (2012) The Trk A, B, C’s of neurotrophins in the cochlea. Anat Rec (Hoboken) 295(11):1877–1895

    Article  CAS  Google Scholar 

  203. Zou J, Zhang Y, Sanjeev W, Sood R, Mikhailov A, Kinnunen P, Pyykkö I (2009) Internalization of liposome nanoparticles functionalized with TrkB ligand in rat cochlear cell population. Eur J Nanomed 2:9–14

    Article  Google Scholar 

  204. Ranjan R, Kholmovski EG, Blauer J et al (2012) Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol 5(6):1130–1135

    Article  PubMed  PubMed Central  Google Scholar 

  205. Liu W, Glueckert R, Kinnefors A, Schrott-Fischer A, Bitsche M, Rask-Andersen H (2012) Distribution of P75 neurotrophin receptor in adult human cochlea—an immunohistochemical study. Cell Tissue Res 348(3):407–415

    Article  CAS  PubMed  Google Scholar 

  206. Vega JA, San Jose I, Cabo R, Rodriguez S, Represa J (1999) Trks and p75 genes are differentially expressed in the inner ear of human embryos. What may Trks and p75 null mutant mice suggest on human development? Neurosci Lett 272(2):103–106

    Article  CAS  PubMed  Google Scholar 

  207. Yu P, Zhang YP, Shields LB et al (2011) Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Exp Neurol 231(1):38–44

    Article  CAS  PubMed  Google Scholar 

  208. Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I, Friedman LM, Shomron N, Avraham KB (2014) Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics 15:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Dash-Wagh S, Jacob S, Lindberg S, Fridberger A, Langel U, Ulfendahl M (2012) Intracellular delivery of short interfering RNA in rat organ of Corti using a cell-penetrating peptide PepfFect6. Mol Ther Nucleic Acids 1:e61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Rybak LP, Mukherjea D, Jajoo S, Kaur T, Ramkumar V (2012) siRNA-mediated knock-down of NOX3: therapy for hearing loss? Cell Mol Life Sci 69(14):2429–2434

    Article  CAS  PubMed  Google Scholar 

  211. Oishi N, Chen FQ, Zheng HW, Sha SH (2013) Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear Res 296:36–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Oliveira S, Storm G, Schiffelers RM (2006) Targeted delivery of siRNA. J Biomed Biotechnol 2006(4):63675

    PubMed  PubMed Central  Google Scholar 

  213. Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A (2003) Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12(8):805–812

    Article  CAS  PubMed  Google Scholar 

  214. Maeda Y, Fukushima K, Nishizaki K, Smith RJ (2005) In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet 14(12):1641–1650

    Article  CAS  PubMed  Google Scholar 

  215. Pfannenstiel SC, Praetorius M, Plinkert PK, Brough DE, Staecker H (2009) Bcl-2 gene therapy prevents aminoglycoside-induced degeneration of auditory and vestibular hair cells. Audiol Neurootol 14(4):254–266

    Article  CAS  PubMed  Google Scholar 

  216. Kakigi A, Nishimura M, Takeda T, Okada T, Murata Y, Ogawa Y (2008) Effects of gadolinium injected into the middle ear on the stria vascularis. Acta Otolaryngol 128(8):841–845

    Article  CAS  PubMed  Google Scholar 

  217. Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 21:1354–1357

    Article  CAS  Google Scholar 

  218. Qin J, Laurent S, Suk JY, Roch A, Mikhaylova M, Bhujwalla ZM, Muller RN, Muhammed M (2007) A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater 19:1874–1878

    Article  CAS  Google Scholar 

  219. Fornara A, Johansson P, Petersson K et al (2008) Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 8(10):3423–3428

    Article  CAS  PubMed  Google Scholar 

  220. Salazar-Alvarez G, Qin J, Sepelak V et al (2008) Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J Am Chem Soc 130(40):13234–13239

    Article  CAS  PubMed  Google Scholar 

  221. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  222. Poe P, Zou J, Zhang W, Qin J, Abo Ramadan U, Fornara A, Muhammed M, Pyykkö I (2009) MRI of the cochlea with superparamagnetic iron oxide nanoparticles compared to gadolinium chelate contrast agents in a rat model. Eur J Nanomed 2:29–36

    Article  Google Scholar 

  223. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31(14):4204–4213

    Article  CAS  PubMed  Google Scholar 

  224. Mondalek FG, Zhang YY, Kropp B, Kopke RD, Ge X, Jackson RL, Dormer KJ (2006) The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J Nanobiotechnology 4:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Plank C, Anton M, Rudolph C, Rosenecker J, Krotz F (2003) Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther 3(5):745–758

    Article  CAS  PubMed  Google Scholar 

  226. Schillingera U, Brilla T, Rudolphb C et al (2005) Advances in magnetofection—magnetically guided nucleic acid delivery. J Mag Magnet Mat 293(1):501–508, 228

    Article  CAS  Google Scholar 

  227. Feng H, Pyykko I, Zou J (2015) Hyaluronan up-regulation is linked to renal dysfunction and hearing loss induced by silver nanoparticles. Eur Arch Otorhinolaryngol 272(10):2629–2642

    Article  PubMed  Google Scholar 

  228. Zou J, Feng H, Mannerstrom M, Heinonen T, Pyykko I (2014) Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J Nanobiotechnology 12:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Kadlecova Z, Baldi L, Hacker D, Wurm FM, Klok HA (2012) Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromolecules 13(10):3127–3137

    Article  CAS  PubMed  Google Scholar 

  230. Farcal L, Torres Andon F, Di Cristo L et al (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 10(5):e0127174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Moss OR, Wong VA (2006) When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function. Inhal Toxicol 18(10):711–716

    Article  CAS  PubMed  Google Scholar 

  232. Martinez-Gutierrez F, Boegli L, Agostinho A, Sanchez EM, Bach H, Ruiz F, James G (2013) Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29(6):651–660

    Article  CAS  PubMed  Google Scholar 

  233. Zou J, Hannula M, Misra S, Feng H, Labrador RH, Aula AS, Hyttinen J, Pyykko I (2015) Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology 13:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Schmidt-Wolf GD, Schmidt-Wolf IG (2003) Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 9(2):67–72

    Article  CAS  PubMed  Google Scholar 

  235. Wang G, Uludag H (2008) Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 5(5):499–515

    Article  CAS  PubMed  Google Scholar 

  236. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 76(1-2):59–71

    Article  CAS  PubMed  Google Scholar 

  237. Coester C, Nayyar P, Samuel J (2006) In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm 62(3):306–314

    Article  CAS  PubMed  Google Scholar 

  238. Godbey WT, Wu KK, Mikos AG (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A 96(9):5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  CAS  PubMed  Google Scholar 

  240. Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J (2010) Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276(3):143–153

    Article  CAS  PubMed  Google Scholar 

  241. Yu T, Greish K, McGill LD, Ray A, Ghandehari H (2012) Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano 6(3):2289–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Yuwen Q, Zhiying H (2015) Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-kappaB signaling pathway. Int J Nanomed 10:1–22

    Article  CAS  Google Scholar 

  243. Kim YS, Song MY, Park JD et al (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Schlinkert P, Casals E, Boyles M et al (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol 13:1

    Article  CAS  Google Scholar 

  245. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  CAS  PubMed  Google Scholar 

  246. Liao X, Sharma N, Kapadia F et al (2011) Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 12(7):2736–2749

    Article  CAS  Google Scholar 

  247. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  248. Mukherjee D, Royce SG, Sarkar S et al (2014) Modeling in vitro cellular responses to silver nanoparticles. J Toxicol 2014:852890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S (2006) The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 6(8):1682–1686

    Article  CAS  PubMed  Google Scholar 

  250. Jeschke M, Moser T (2015) Considering optogenetic stimulation for cochlear implants. Hear Res 322:224–234

    Article  PubMed  Google Scholar 

  251. von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Sturzebecher E, Klinke R (1999) Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 61(6):334–340

    Article  Google Scholar 

  252. Haake SM, Dinh CT, Chen S, Eshraghi AA, Van De Water TR (2009) Dexamethasone protects auditory hair cells against TNFalpha-initiated apoptosis via activation of PI3K/Akt and NFkappaB signaling. Hear Res 255(1–2):22–32

    Article  CAS  PubMed  Google Scholar 

  253. Strecker H, Jolly C, Garnham C (2010) Cochlear implantation: an opportunity for drug development. Drug Discov Today 15(7–8):314–21255

    Article  CAS  Google Scholar 

  254. Hansen S, Mlynski R, Volkenstein S, Stark T, Schwaab M, Dazert S, Brors D (2009) Growth behavior of spiral ganglion explants on cochlear implant electrodes and their materials. HNO 57(4):358–363

    Article  CAS  PubMed  Google Scholar 

  255. Shepherd RK, Coco A, Epp SB (2008) Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 242(1–2):100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Jolly C, Garnham C, Mirzadeh H, Truy E, Martini A, Kiefer J, Braun S (2010) Electrode features for hearing preservation and drug delivery strategies. Adv Otorhinolaryngol 67:28–42

    PubMed  Google Scholar 

  257. Ibrahim HN, Truy E, Bossard D, Hessler R, Jolly C (2010) Disposable drug delivery catheter for use in cochlear implantation: radiological study in cadaver temporal bones. Cochlear Implants Int 11(Suppl 1):431–433

    Article  PubMed  Google Scholar 

  258. Richardson RT, Wise AK, Andrew JK, O'Leary SJ (2008) Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opin Drug Deliv 5(10):1059–1076

    Article  CAS  PubMed  Google Scholar 

  259. Fiering J, Mescher MJ, Leary Swan EE et al (2009) Local drug delivery with a self-contained, programmable, microfluidic system. Biomed Microdevices 11(3):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Zou J, Zhang W, Poe D et al (2010) MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond) 5(5):739–754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

HEI-OCI immortalized hair cell line (kindly provided by Prof. Federico Kalinec). Dr. Anna Minasyan kindly helped in structuring the manuscript. This project is supported by EU NanoEar Integrated Project NMP4-CT-2006-026556. We also acknowledge Kellomäki Minna (Tampere University of Technology), Linden Mika (Åbo Akademi University), Vihinen-Ranta Maija (Univeristy of Jyväskylä), Muhammed Mamoun (Royal Institute of Technology), Möller Martin and Kroll Juergen (RWTH, Aachen), Saulnier Patrick (Université d'Angers-INSERM U646), Stöver Timo (Medizinische Hochschule Hannover), Klok Harm-Anton (Ecole Polytechnique Fédérale de Lausanne), Popelar Jiri (Institute of Experimental Medicine, Prague), Rask-Andersen Helge (Uppsala University Hospital), Lianos Elias (University of Athens School of Medicine), Newman Tracey (University of Southampton), Jolly Claude (MED-EL Corporation, Austria), and Löbler Marian (University of Rostock) for their comments and contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmari Pyykkö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pyykkö, I., Zou, J., Schrott-Fischer, A., Glueckert, R., Kinnunen, P. (2016). An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics