Skip to main content

Detection of Excitatory and Inhibitory Synapses in the Auditory System Using Fluorescence Immunohistochemistry and High-Resolution Fluorescence Microscopy

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

In sensory systems, a balanced excitatory and inhibitory circuit along the ascending pathway is not only important for the establishment of topographically ordered connections from the periphery to the cortex but also for temporal precision of signal processing. The accomplishment of spatial and temporal cortical resolution in the central nervous system is a process that is likely initiated by the first sensory experiences that drive a period of increased intracortical inhibition. In the auditory system, the time of first sensory experience is also the period in which a reorganization of cochlear efferent and afferent fibers occurs leading to the mature innervation of inner and outer hair cells. This mature hair cell innervation is the basis of accurate sound processing along the ascending pathway up to the auditory cortex. We describe here, a protocol for detecting excitatory and inhibitory marker proteins along the ascending auditory pathway, which could be a useful tool for detecting changes in auditory signal processing during various forms of hearing disorders. Our protocol uses fluorescence immunohistochemistry in combination with high-resolution fluorescence microscopy in cochlear and brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer W, Panford-Walsh R, Knipper M (2014) The function of BDNF in the adult auditory system. Neuropharmacology 76(Pt C):719–728

    Article  CAS  PubMed  Google Scholar 

  2. Heimel JA, van Versendaal D, Levelt CN (2011) The role of GABAergic inhibition in ocular dominance plasticity. Neural Plast 2011:391763

    PubMed  PubMed Central  Google Scholar 

  3. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755

    Article  CAS  PubMed  Google Scholar 

  4. Lein ES, Finney EM, McQuillen PS, Shatz CJ (1999) Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation. Proc Natl Acad Sci U S A 96(23):13491–13495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiao Y, Zhang Z, Zhang C, Wang X, Sakata K, Lu B, Sun QQ (2011) A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc Natl Acad Sci U S A 108(29):12131–12136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kraus HJ, Aulbach-Kraus K (1981) Morphological changes in the cochlea of the mouse after the onset of hearing. Hear Res 4(1):89–102

    Article  CAS  PubMed  Google Scholar 

  7. Simmons DD (2002) Development of the inner ear efferent system across vertebrate species. J Neurobiol 53(2):228–250

    Article  PubMed  Google Scholar 

  8. Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear Res 49(1–3):209–223

    Article  CAS  PubMed  Google Scholar 

  9. Sendin G, Bulankina AV, Riedel D, Moser T (2007) Maturation of ribbon synapses in hair cells is driven by thyroid hormone. J Neurosci 27(12):3163–3173

    Article  CAS  PubMed  Google Scholar 

  10. Darrow KN, Maison SF, Liberman MC (2006) Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 9(12):1474–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dlugaiczyk J, Singer W, Schick B et al (2008) Expression of glycine receptors and gephyrin in the rat cochlea. Histochem Cell Biol 129(4):513–523

    Article  CAS  PubMed  Google Scholar 

  12. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73(2):309–373

    CAS  PubMed  Google Scholar 

  13. Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33(2):97–113

    Article  PubMed  Google Scholar 

  14. Rajan R (1988) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophys 60(2):549–568

    CAS  Google Scholar 

  15. Reisinger E, Bresee C, Neef J et al (2011) Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J Neurosci 31(13):4886–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruel J, Wang J, Rebillard G, Eybalin M, Lloyd R, Pujol R, Puel JL (2007) Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 227(1–2):19–27

    Article  CAS  PubMed  Google Scholar 

  17. Ramakrishnan NA, Drescher MJ, Drescher DG (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel CaV1.3. J Biol Chem 284(3):1364–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roux I, Safieddine S, Nouvian R et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127(2):277–289

    Article  CAS  PubMed  Google Scholar 

  19. Beurg M, Michalski N, Safieddine S, Bouleau Y, Schneggenburger R, Chapman ER, Petit C, Dulon D (2010) Control of exocytosis by synaptotagmins and otoferlin in auditory hair cells. J Neurosci 30(40):13281–13290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson CP, Chapman ER (2010) Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion. J Cell Biol 191(1):187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuchs PA (2005) Time and intensity coding at the hair cell's ribbon synapse. J Physiol 566(Pt 1):7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lysakowski A, Goldberg JM (2008) Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 511(1):47–64

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moser T, Brandt A, Lysakowski A (2006) Hair cell ribbon synapses. Cell Tissue Res 326(2):347–359

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmitz F (2009) The making of synaptic ribbons: how they are built and what they do. Neuroscientist 15(6):611–624

    Article  PubMed  Google Scholar 

  25. LoGiudice L, Matthews G (2009) The role of ribbons at sensory synapses. Neuroscientist 15(4):380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parsons TD, Sterling P (2003) Synaptic ribbon. Conveyor belt or safety belt? Neuron 37(3):379–382

    Article  CAS  PubMed  Google Scholar 

  27. Zenisek D (2008) Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc Natl Acad Sci U S A 105(12):4922–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson SL, Marcotti W, Kros CJ (2005) Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J Physiol 563(Pt 1):177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434(7035):889–894

    Article  CAS  PubMed  Google Scholar 

  30. Klinke R (1987) Processing of acoustic stimuli in the inner ear—a review of recent research results. HNO 35(4):139–148

    CAS  PubMed  Google Scholar 

  31. Kraus KS, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1–2):34–46

    Article  PubMed  Google Scholar 

  32. Knipper M, Zimmermann U, Müller M (2010) Molecular aspects of tinnitus. Hear Res 266(1–2):60–69

    Article  CAS  PubMed  Google Scholar 

  33. Knipper M, Van Dijk P, Nunes I, Ruttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33

    Article  PubMed  Google Scholar 

  34. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682

    Article  CAS  PubMed  Google Scholar 

  35. Knipper M, Müller M, Zimmermann U (2012) Molecular mechanism of tinnitus. In: Fay RR, Popper AN, Eggermont JJ (eds) Springer handbook of audidory research: neural correlates of tinnitus. Springer, New York, pp 59–82

    Google Scholar 

  36. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eybalin M, Ripoll C (1990) Immunolocalization of parvalbumin in two glutamatergic cell types of the guinea pig cochlea: inner hair cells and spinal ganglion neurons. CR Acad Sci III 310(13):639–644

    CAS  Google Scholar 

  38. Yasunaga S, Grati M, Chardenoux S, Smith TN, Friedman TB, Lalwani AK, Wilcox ER, Petit C (2000) OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. Am J Hum Genet 67(3):591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duncker SV, Franz C, Kuhn S et al (2013) Otoferlin couples to clathrin-mediated endocytosis in mature cochlear inner hair cells. J Neurosci 33(22):9508–9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knipper M, Zimmermann U, Rohbock K, Kopschall I, Zenner HP (1995) Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development. Brain Res Dev Brain Res 89(1):73–86

    Article  CAS  PubMed  Google Scholar 

  41. Knipper M, Panford-Walsh R, Singer W, Ruttiger L, Zimmermann U (2015) Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 361(1):77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pinal CS, Tobin AJ (1998) Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 5(2–3):109–118

    CAS  PubMed  Google Scholar 

  43. Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahlke C, Wallhausser-Franke E (2004) Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res 195(1–2):17–34

    Article  CAS  PubMed  Google Scholar 

  45. Tan J, Rüttiger L, Panford-Walsh R et al (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145(2):715–726

    Article  CAS  PubMed  Google Scholar 

  46. Singer W, Zuccotti A, Jaumann M et al (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47(1):261–279

    Article  CAS  PubMed  Google Scholar 

  47. Ruttiger L, Singer W, Panford-Walsh R et al (2013) The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PloS One 8(3):e57247

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287

    Article  PubMed  Google Scholar 

  49. Ferando I, Mody I (2014) In vitro gamma oscillations following partial and complete ablation of d subunit-containing GABA receptors from parvalbumin interneurons. Neuropharmacology 88:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jonas P, Buzsaki G (2007) Neural inhibition. Scholarpedia 2(9):3286

    Article  Google Scholar 

  51. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18(23):9733–9750

    CAS  PubMed  Google Scholar 

  52. Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F (2004) Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 468(3):380–394

    Article  CAS  PubMed  Google Scholar 

  53. Johnson EW, Eller PM, Jafek BW, Norman AW (1992) Calbindin-like immunoreactivity in two peripheral chemosensory tissues of the rat: taste buds and the vomeronasal organ. Brain Res 572(1–2):319–324

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlies Knipper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singer, W., Geisler, HS., Panford-Walsh, R., Knipper, M. (2016). Detection of Excitatory and Inhibitory Synapses in the Auditory System Using Fluorescence Immunohistochemistry and High-Resolution Fluorescence Microscopy. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics