Skip to main content

Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3–4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette—which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier—is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.

Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Engstrom H, Engstrom B (1978) Structure of the hairs on cochlear sensory cells. Hear Res 1(1):49–66

    Article  CAS  PubMed  Google Scholar 

  2. Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86(1):244–259

    Article  CAS  PubMed  Google Scholar 

  3. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2(12):920–931

    Article  CAS  PubMed  Google Scholar 

  4. Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16(7):790–797

    Article  CAS  PubMed  Google Scholar 

  5. Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107(8):1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castellano-Munoz M, Peng AW, Salles FT, Ricci AJ (2012) Swept field laser confocal microscopy for enhanced spatial and temporal resolution in live-cell imaging. Microsc Microanal 18(4):753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bullen A, Taylor RR, Kachar B, Moores C, Fleck RA, Forge A (2014) Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods. Hear Res 315:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15(2):103–112

    Article  CAS  PubMed  Google Scholar 

  10. Furness DN, Katori Y, Nirmal Kumar B, Hackney CM (2008) The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium. Neuroscience 154(1):10–21

    Article  CAS  PubMed  Google Scholar 

  11. Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203(Pt 3):285–294

    Article  CAS  PubMed  Google Scholar 

  12. Lucic V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202(3):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dufrene YF (2008) Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6(9):674–680

    Article  CAS  PubMed  Google Scholar 

  14. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998

    Article  CAS  PubMed  Google Scholar 

  15. Langer MG, Koitschev A, Haase H, Rexhausen U, Horber JK, Ruppersberg JP (2000) Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy 82(1–4):269–278

    Article  CAS  PubMed  Google Scholar 

  16. Langer MG, Fink S, Koitschev A, Rexhausen U, Horber JK, Ruppersberg JP (2001) Lateral mechanical coupling of stereocilia in cochlear hair bundles. Biophys J 80(6):2608–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    Article  CAS  PubMed  Google Scholar 

  18. Lab MJ, Bhargava A, Wright PT, Gorelik J (2013) The scanning ion conductance microscope for cellular physiology. Am J Physiol Heart Circ Physiol 304(1):H1–H11

    Article  PubMed  Google Scholar 

  19. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73(2):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Novak P, Li C, Shevchuk AI, Stepanyan R et al (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6(4):279–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molecular Devices L (2012) The Axon guide: electrophysiology and biophysics laboratory techniques. 3rd edn. http://info.moleculardevices.com/acton/fs/blocks/showLandingPage/a/2560/p/p-023c/t/page/fm/0

Download references

Acknowledgments

We thank Yuri E. Korchev, Pavel Novak and Andrew I. Shevchuk for providing advice on all stages of this project and for the guidance on the use of the HPICM Control and ScanIC Image software, Oleg A. Belov and Samir A. Rawashdeh, for their help with software manipulations, and Julián Vergara-Rojas, for his assistance during the HPICM imaging of rat inner hair cell stereocilia bundles. This work was supported by the National Institute of Deafness and Other Communication Disorders grants R01 DC008861 and R01 DC014658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory I. Frolenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vélez-Ortega, A.C., Frolenkov, G.I. (2016). Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics