Skip to main content

The Use of In Silico Models Within a Large Pharmaceutical Company

  • Protocol
  • First Online:
Book cover In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

The present contribution describes how in silico models are applied at different stages of the drug discovery process in the pharmaceutical industry. A thorough description of the most relevant computational methods and tools is given along with an in-depth evaluation of their performance in the context of potential genotoxic impurities assessment.

The challenges of predicting the outcome of highly complex studies are discussed followed by considerations on how novel ways to manage, store, share and analyze data may advance knowledge and facilitate modeling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller L, Alexander B, Christoph F, Wolfgang M, Axel P (2008) Strategies for using computational toxicology methods in pharmaceutical R&D. In: Ekins S (ed) Computational toxicology: risk assessment for pharmaceutical and environmental chemicals. Wiley, Hoboken, NY, pp 545–579

    Google Scholar 

  2. Muster WG et al (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  CAS  PubMed  Google Scholar 

  3. Cases M et al (2014) The eTOX data-sharing project to advance in silico drug-induced toxicity prediction. Int J Mol Sci 15(11):21136–21154

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kavlock R (2009) The future of toxicity testing—the NRC vision and the EPA’s ToxCast program national center for computational toxicology. Neurotoxicol Teratol 31(4):237–237

    Article  Google Scholar 

  5. Kohonen P et al (2013) The ToxBank Data Warehouse: supporting the replacement of in vivo repeated dose systemic toxicity testing. Mol Inform 32(1):47–63

    Article  CAS  Google Scholar 

  6. Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10:87

    Article  CAS  PubMed  Google Scholar 

  7. Arrowsmith J, Miller P (2013) Trial watch: phase II and Phase III attrition rates 2011–2012. Nat Rev Drug Discov 12:569

    Article  CAS  PubMed  Google Scholar 

  8. Arrowsmith J (2011) Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 10:328–329

    Article  CAS  PubMed  Google Scholar 

  9. Hillebrecht A et al (2011) Comparative evaluation of in silico systems for Ames test mutagenicity prediction: scope and limitations. Chem Res Toxicol 24:843–854

    Article  CAS  PubMed  Google Scholar 

  10. Sanderson DM, Earnshaw CG (1991) Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol 10:261–273

    Article  CAS  PubMed  Google Scholar 

  11. Greene N, Judson PN, Langowski JJ, Marchant CA (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314

    Article  CAS  PubMed  Google Scholar 

  12. Judson PN (2006) Using computer reasoning about qualitative and quantitative information to predict metabolism and toxicity. In: Testa B, Kramer SD, Wunderli-Allespach H, Volkers G (eds) Pharmacokinetic profiling in drug research: biological, physicochemical, and computational strategies. Wiley, New York, pp 183–215

    Google Scholar 

  13. Derek Nexus (2015) http://www.lhasalimited.org/products/derek-nexus.htm

  14. ToxTree version 2.6.6 (2015) https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxtree

  15. CASE Ultra version 1.5.2.0 (2015) http://www.multicase.com/case-ultra

  16. Leadscope Expert Alerts version 3.2.4-1 (2015) http://www.leadscope.com/expert_alerts/

  17. Limited L (2015) Derek Nexus: negative predictions for bacterial mutagenicity. http://www.lhasalimited.org/products/negative-predictions-for-bacterial-mutagenicity.htm

  18. Pavan M, Worth AP (2008) Publicly-accessible QSAR software tools developed by the Joint Research Centre. SAR QSAR Environ Res 19:785–799

    Article  CAS  PubMed  Google Scholar 

  19. Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res 659:248–261

    Article  CAS  PubMed  Google Scholar 

  20. Leadscope® Genetox Expert Alerts White paper (2014) http://www.leadscope.com/white_papers/Leadscope_alerts_white_paper.pdf

  21. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488

    Article  CAS  Google Scholar 

  22. Sarah Nexus (2015) http://www.lhasalimited.org/products/sarah-nexus.htm

  23. Leasdcope Model Appliers (2015) http://www.leadscope.com/model_appliers/

  24. van Leeuwen K, Schultz TW, Henry T, Diderich B, Veith GD (2009) Using chemical categories to fill data gaps in hazard assessment. SAR QSAR Environ Res 20:207–220

    Article  PubMed  Google Scholar 

  25. Bioclipse (2015) http://www.bioclipse.net/

  26. Prous Institute Symmetry (2015) http://symmetry.prousresearch.com/about-symmetry/

  27. Hanser T, Barber C, Rosser E, Vessey JD, Webb SJ, Werner S (2014) Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge. J Cheminform 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sarah Nexus Methodology (2015) http://www.lhasalimited.org/products/methodology-confidence-and-interpretation-of-predictions.htm

  29. Klopman G (1992) A hierarchical computer automated structure evaluation program. Quant Struct Act Relat 11:176–184

    Article  CAS  Google Scholar 

  30. Klopman G (1984) Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 106:7315–7321

    Article  CAS  Google Scholar 

  31. Chakravarti SK, Saiakhov RD, Klopman G (2012) Optimizing predictive performance of CASE ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model 52:2609–2618

    Article  CAS  PubMed  Google Scholar 

  32. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):379

    Article  Google Scholar 

  33. The OECD QSAR Toolbox (2015) http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm

    Google Scholar 

  34. OECD Toolbox guidance document (2015)

    Google Scholar 

  35. OpenTox (2015) http://www.opentox.org/

  36. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–320

    Article  CAS  PubMed  Google Scholar 

  37. Kuhn T, Willighangen EL, Zielesny A, Steinbeck C (2010) CDK-Taverna: an open workflow environment for cheminformatics. BMC Bioinformatics 11:159

    Article  PubMed  PubMed Central  Google Scholar 

  38. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo- and bioinformatics. Curr Pharm Des 12:2111–2120

    Article  CAS  PubMed  Google Scholar 

  39. Ekins S (2014) Progress in computational toxicology. J Pharmacol Toxicol Methods 69:115–140

    Article  CAS  PubMed  Google Scholar 

  40. Cheng A, Li W, Zhou Y, Shen J, Wu Z, Liu G et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inform Model 52:3099–3105

    Article  CAS  Google Scholar 

  41. admetSAR (2015) http://lmmd.ecust.edu.cn:8000/

  42. Valencia A, Prous J, Mora O, Sadrieh N, Valerio LG Jr (2013) A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities. Toxicol Appl Pharmacol 273(3):427–434

    Article  CAS  PubMed  Google Scholar 

  43. Guideline E (2006) Guideline on the limits of genotoxic impurities. http://www.emea.europa.eu/pdfs/human/swp/519902en.pdf

    Google Scholar 

  44. Brigo A, Müller L (2011) Development of the threshold of toxicological concern concept and its relationship to duration of exposure. In: Teasdale A (ed) Genotoxic impurities. Wiley, New York, pp 27–63

    Chapter  Google Scholar 

  45. ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (1997) Topic Q3C. Impurities: residual solvents

    Google Scholar 

  46. Kroes R, Renwick AG, Cheesemann M, Kleiner J, Mangelsdorf I, Piersma A, Schilter B, Schlatter J, van Schothorst F, Vos JG, Wurtzen G (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42:65–83

    Article  CAS  PubMed  Google Scholar 

  47. ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2002) Topic Q3A(R). Impurities testing guideline: impurities in new drug products (Revision)

    Google Scholar 

  48. ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2002) Topic Q3A(R). Impurities testing guideline: impurities in new drug substances (revision)

    Google Scholar 

  49. Müller L, Mauthe RJ, Riley CM, Andino MM, Antonis DD, Beels C, DeGeorge J, De Knaep AG, Ellison D, Fagerland JA, Frank R, Fritschel B, Galloway S, Harpur E, Humfrey CD, Jacks AS, Jagota N, Mackinnon J, Mohan G, Ness DK, O'Donovan MR, Smith MD, Vudathala G, Yotti L (2006) A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol 44:198–211

    Article  PubMed  Google Scholar 

  50. Kasper P, Müller L (2015) Genotoxic impurities in pharmaceuticals. In: Graziano MJ, Jacobson-Kram D (eds) Genotoxicity and carcinogenicity testing of pharmaceuticals. Springer, Switzerland

    Google Scholar 

  51. M7 I. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenicity risk (2014)

    Google Scholar 

  52. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL, Dobo KL, Gervais V, Glowienke S, van Gompel J, Greene N, Muster W, Nicolette J, Reddy MV, Thybaud V, Vock E, White AT, Müller L (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67(1):39–52

    Article  CAS  PubMed  Google Scholar 

  53. Brigo A, Muster W, Singer T (2015) Comparative assessment of several in silico systems and models to predict the outcome of the Ames mutagenicity assay. In: Toxicology SO (ed) Society of Toxicology Annual Meeting 2015. San Diego, California, USA

    Google Scholar 

  54. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenate for activation and bacteria for detection. Proc Natl Acad Sci U S A 70:2281–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Escobar PA, Kemper RA, Tarca J, Nicolette J, Kenyon M, Glowienke S, Sawant SG, Christensen J, Johnson TE, McKnight C, Ward G, Galloway SM, Custer L, Gocke E, O’Donovan MR, Braun K, Snyder RD, Mahadevan B (2013) Bacterial mutagenicity screening in the pharmaceutical industry. Mutat Res 752:99–118

    Article  CAS  PubMed  Google Scholar 

  56. Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, Heinrich N, Müller KR (2009) Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model 49:2077–2081

    Article  CAS  PubMed  Google Scholar 

  57. Reuters T (2015) Metacore—data-mining and pathway analysis http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/metacore.html

    Google Scholar 

  58. Fischer H, et al (2001) Prediction of in vitro phospholipidosis of drugs by means of their amphiphilic properties. In: Rational approaches to drug design, p 286–289

    Google Scholar 

  59. Kruhlak NL et al (2007) Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev 59(1):43–55

    Article  CAS  PubMed  Google Scholar 

  60. CompuDrug. MetabolExpert (2015) http://www.compudrug.com/metabolexpert

  61. Discovery M (2015) MetaSite http://www.moldiscovery.com/software/metasite/

    Google Scholar 

  62. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Piatetsky-Shapiro G (2012) Big data hype (and reality). https://hbr.org/2012/10/big-data-hype-and-reality

    Google Scholar 

  64. Sciences PL (2015) http://www.pointcrosslifesciences.com/

  65. James LP, Mayeuy PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31(12):1499–1506

    Article  CAS  PubMed  Google Scholar 

  66. FDA (2014) http://www.fda.gov/downloads/Drugs/Guidances/UCM292334.pdf

  67. Briggs K et al (2012) Inroads to predict in vivo toxicology—an introduction to the eTOX project. Int J Mol Sci 13(3):3820–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Brigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brigo, A., Muster, W. (2016). The Use of In Silico Models Within a Large Pharmaceutical Company. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics