Skip to main content

Taking Advantage of Databases

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

Toxicity databases are a useful resource to support hazard and risk assessment. They are used to retrieve historical studies for compounds of interest and to support toxicity predictions where no data exists. Toxicity predictions are either based upon study results from similar chemicals or prediction models built from these databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimitrov S, Mekenyan O (2010) An introduction to read-across for the prediction of effects of chemicals. In: Cronin MTD, Madden JC (eds) In silico toxicology: principles and applications. The Royal Society of Chemistry, Cambridge, pp 372–384

    Chapter  Google Scholar 

  2. van Leeuwen K, Schultz TW, Henry T, Diderich R, Veith GD (2009) Using chemical categories to fill data gaps in hazard assessment. SAR QSAR Environ Res 20:207–220

    Article  PubMed  Google Scholar 

  3. Cronin MTD (2013) An introduction to chemical grouping, categories and read across to predict toxicity. In: Cronin MTD, Madden JC, Enoch SJ, Roberts DW (eds) Chemical toxicity prediction: category formation and read-across applications. The Royal Society of Chemistry, Cambridge, pp 1–29

    Chapter  Google Scholar 

  4. Cronin MTD (2013) Evaluation of categories and read-across for toxicity prediction allowing for regulatory acceptance. In: Cronin MTD, Madden JC, Enoch SJ, Roberts DW (eds) Chemical toxicity prediction: category formation and read-across applications. The Royal Society of Chemistry, Cambridge, pp 155–167

    Chapter  Google Scholar 

  5. Myatt GJ, Cross KP (2015) In silico solutions for predicting efficacy and toxicity. In: Coleman R (ed) Human-based systems for translation research. Royal Society of Chemistry, London, UK

    Google Scholar 

  6. Benfenati E (2012) E-Book: theory, guidance and applications on QSAR and REACH, ISBN 978-88-902405-4-6; Orchestra Project website: http://www.orchestra-qsar.eu/documents/333

  7. Dearden JC, Barratt MD, Benigni R, Bristol DW, Combes RD, Cronin MTD, Judson PN, Payne MP, Richard AM, Tichy M, Worth AP, Yourick JJ (1997) The development and validation of expert systems for predicting toxicity. Altern Lab Anim 25:223–252

    Google Scholar 

  8. Daston G, Knight DJ, Schwarz M, Gocht T, Thomas RS, Mahony C, Whelan M (2015) SEURAT: safety evaluation ultimately replacing animal testing — recommendations for future research in the field of predictive toxicology. Arch Toxicol 89(1):15–23

    Article  CAS  PubMed  Google Scholar 

  9. Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, Schilter B, Schlatter J, van Schothorst F, Vos JG, Wurtzen G (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42:65–83

    Article  CAS  PubMed  Google Scholar 

  10. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12

    Article  CAS  PubMed  Google Scholar 

  11. http://www.cdisc.org/send

  12. http://www.leadscope.com/

  13. Sweet DV, Anderson VP, Fang JCF (1999) An overview of the registry of toxic effects of chemical substances (RTECS): critical information on chemical hazards. Chem Health Saf 6(6):12–16

    Article  CAS  Google Scholar 

  14. www.cdc.gov/niosh/rtecs/default.html

  15. Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA (1997) Predicting modes of action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16(5):948–967

    Article  CAS  Google Scholar 

  16. http://www.epa.gov/ncct/dsstox/

  17. http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm

  18. Estrada E, Patlewicz G, Chamberlain M et al (2003) Computer-aided knowledge generation for understanding skin sensitization mechanisms: the TOPS-MODE approach. Chem Res Toxicol 16:1226–1235

    Article  CAS  PubMed  Google Scholar 

  19. Leadscope SAR Genetox Database 2015 User Guide

    Google Scholar 

  20. FDA CDER FOI site: http://www.accessdata.fda.gov/scripts/cder/drugsatfda. Accessed 16 May 2015

  21. Food and Drug Administration CFSAN EAFUS (2007) U.S. FDA Center for food safety and applied nutrition, everything added to food in the United States. http://www.fda.gov/food/ingredientspackaginglabeling/ucm115326.htm. Accessed 16 May 2015

  22. Tennant RW (1991) The genetic toxicity database of the National Toxicology Program: evaluation of the relationships between genetic toxicity and carcinogenicity. Environ Health Perspect 96:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. CCRIS. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS. Accessed 5 June 2010

  24. Tokyo-Eiken (2007) Tokyo Metropolitan Institute of Public Health, Mutagenicity of food additives

    Google Scholar 

  25. http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html

  26. Ali M, Patel M, Wilkinson D, Judson P, Cross K, Bower D (2013) ToxML, a data exchange standard with content controlled vocabulary used to build better (Q)SAR models. SAR QSAR Environ Res 24(6):429–438

    Article  CAS  PubMed  Google Scholar 

  27. http://toxml.org/

  28. Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested by the U.S.NCI/NTP. Mutat Res 204:17–115

    Article  CAS  PubMed  Google Scholar 

  29. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  PubMed  Google Scholar 

  30. Johnson DE, Blower PE, Myatt GJ, Wolfgang G (2001) Chem-tox informatics: data mining using a medicinal chemistry building block approach. Curr Opin Drug Disc Develop 4(1):92–101

    CAS  Google Scholar 

  31. Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE Jr (2000) LeadScope: software for exploring large sets of screening data. J Chem Inf Comput Sci 40(6):1302–1314

    Article  CAS  PubMed  Google Scholar 

  32. Cross KP, Myatt G, Yang C, Fligner MA, Verducci JS, Blower PE Jr (2003) Finding discriminating structural features by reassembling common building blocks. J Med Chem 46(22):4770–4775

    Article  CAS  PubMed  Google Scholar 

  33. Blower PE, Cross KP (2006) Decision tree methods in pharmaceutical research. Curr Top Med Chem 6(1):31–39, Review

    Article  CAS  PubMed  Google Scholar 

  34. Barnard JM, Downs GM (1992) J Chem Inf Comput Sci 32:644

    Article  CAS  Google Scholar 

  35. Blower PE Jr, Cross KP, Fligner MA, Myatt GJ, Verducci JS, Yang C (2004) Systematic analysis of large screening sets in drug discovery. Curr Drug Discov Technol 1(1):37–47

    Article  CAS  PubMed  Google Scholar 

  36. Benigni R, Bossa C (2011) Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev 111(4):2507–2536

    Article  CAS  PubMed  Google Scholar 

  37. Enoch S, Cronin MT (2010) A review of electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 40:728–748

    Article  CAS  PubMed  Google Scholar 

  38. Shamovsky I et al (2011) Explanation for main features of structure-genotoxicity relationships of aromatic amines by theoretical studies of their activation pathways in CYP1A2. J Am Chem Soc 133(40):16168–16185

    Article  CAS  PubMed  Google Scholar 

  39. http://tools.niehs.nih.gov/cebs3/ntpViews/?activeTab=detail&studyNumber=636704

  40. http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+ccris:@term+@rn+81-11-8

  41. http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+ccris:@term+@rn+81-11-8

  42. http://tools.niehs.nih.gov/cebs3/ntpViews/?activeTab=detail&studyNumber=121112

  43. http://tools.niehs.nih.gov/cebs3/ntpViews/?activeTab=detail&studyNumber=150557

  44. http://tools.niehs.nih.gov/cebs3/ntpViews/?activeTab=detail&studyNumber=797992

  45. Geladi P, Kowalski B (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 1(17):185

    Google Scholar 

  46. Yang C, Cross KP, Myatt GJ, Blower PE, Rathman JF (2007) Building predictive models for protein tyrosine phosphatase 1B inhibitors based on discriminating structural features by reassembling medicinal chemistry building blocks. J Med Chem 47(24):5984–5994

    Article  Google Scholar 

  47. Leadscope I (2009) Leadscope enterprise predictive data miner documentation. Leadscope, Columbus, OH

    Google Scholar 

  48. Leadscope, Inc (2014) Leadscope user guide. Leadscope, Columbus, OH

    Google Scholar 

  49. United Nations (2011) Globally harmonized system of classification and labelling of chemicals, 4th edn. United Nations, New York/Geneva

    Google Scholar 

  50. Cefic (2002) (Q)SARs for human health and the environment. In: Workshop Report on Regulatory acceptance of (Q)SARs Setubal, Portugal, Accessed 4–6 Mar 2002

    Google Scholar 

  51. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL, Dobo KL, Gervais V, Glowienke S, van Gompel J, Greene N, Muster W, Nicolette J, Reddy MV, Thybaud V, Vock E, White AT, Muller L (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67:39–52

    Article  CAS  PubMed  Google Scholar 

  52. Dobo KL, Greene N, Fred C, Glowienke S, Harvey JS, Hasselgren C, Jolly R, Kenyon MO, Munzner JB, Muster W, Neft R, Reddy MV, White AT, Weiner S (2012) In silico methods combined with expert knowledge rule out mutagenic potential of pharmaceutical impurities: an industry survey. Regul Toxicol Pharmacol 62:449–455

    Article  CAS  PubMed  Google Scholar 

  53. Kruhlak NL, Benz RD, Zhou H, Colatsky TJ (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91:529–534

    Article  CAS  PubMed  Google Scholar 

  54. Naven RT, Greene N, Williams RV (2012) Latest advances in computational genotoxicity prediction. Expert Opin Drug Metab Toxicol 8:1579–1587

    Article  PubMed  Google Scholar 

  55. Powley MW (2015) (Q)SAR assessments of potentially mutagenic impurities: a regulatory perspective on the utility of expert knowledge and data submission. Regul Toxicol Pharmacol 71:295–300

    Article  CAS  PubMed  Google Scholar 

  56. ICH (2014) ICH M7 – assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

    Google Scholar 

  57. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_Step_4.pdf

  58. Cross KP, Myatt GJ, Bower DA, Miller S (2015) Evaluating expert opinions for ICH M7 compliant regulatory submissions created using an automated framework poster presented at the society of toxicology meeting

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn J. Myatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Myatt, G.J., Quigley, D.P. (2016). Taking Advantage of Databases. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics