Skip to main content

HPLC-Based Metabolomic Analysis of Normal and Inflamed Gut

  • Protocol
  • First Online:
Gastrointestinal Physiology and Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1422))

Abstract

The idiopathic inflammatory bowel diseases, which include Crohn’s disease and ulcerative colitis, are multifactorial chronic conditions that result in numerous perturbations of metabolism in the gastrointestinal mucosa. Thus, methodologies for the qualitative and quantitative analysis of small molecule metabolites in mucosal tissues are important for further elucidation of mechanisms driving inflammation and the metabolic consequences of inflammation. High-performance liquid chromatography (HPLC) is a ubiquitous analytical technique that can be adapted for both targeted and non-targeted metabolomic analysis. Here, protocols for reversed-phase (RP) HPLC-based methods using two different detection modalities are presented. Ultraviolet detection is used for the analysis of adenine nucleotide metabolites, whereas electrochemical detection is used for the analysis of multiple amino acid metabolites. These methodologies provide platforms for further characterization of the metabolic changes that occur during gastrointestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagan RL (1994) High-performance liquid chromatography for small-scale studies of drug stability. Am J Hosp Pharm 51:2162–2175

    CAS  PubMed  Google Scholar 

  2. Colgan SP, Fennimore B, Ehrentraut SF (2013) Adenosine and gastrointestinal inflammation. J Mol Med 91:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhatt DP, Chen X, Geiger JD, Rosenberger TA (2012) A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures. J Chromatogr B Analyt Technol Biomed Life Sci 889–890:110–115

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chunn JL, Young HWJ, Banerjee SK, Colasurdo GN, Blackburn MR (2001) Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol 167:4676–4685

    Article  CAS  PubMed  Google Scholar 

  5. Knudsen TB, Winters RS, Otey SK, Blackburn MR, Airhart MJ, Church JK, Skalko RG (1992) Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology 45:91–103

    Article  CAS  PubMed  Google Scholar 

  6. Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Synnestvedt K, Furuta GT, Comerford KM, Louis N et al (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ward JL, Tse CM (1999) Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and Caco-2 cells. Biochim Biophys Acta 1419:15–22

    Article  CAS  PubMed  Google Scholar 

  9. Barrio JR, Secrist JA III, Leonard NJ (1972) Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun 46:597–604

    Article  CAS  PubMed  Google Scholar 

  10. Tsunoda M (2006) Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 386:506–514

    Article  CAS  PubMed  Google Scholar 

  11. Rozet E, Morello R, Lecomte F, Martin GB, Chiap P, Crommen J, Boos KS, Hubert P (2006) Performances of a multidimensional on-line SPE-LC-ECD method for the determination of three major catecholamines in native human urine: validation, risk and uncertainty assessments. J Chromatogr B Analyt Technol Biomed Life Sci 844:251–260

    Article  CAS  PubMed  Google Scholar 

  12. Glover LE, Bowers BE, Saeedi B, Ehrentraut SF et al (2013) Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A 110:19820–19825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green BT, Lyte M, Kulkarni-Narla A, Brown DR (2003) Neuromodulation of enteropathogen internalization in Peyer’s patches from porcine jejunum. J Neuroimmunol 141:74–82

    Article  CAS  PubMed  Google Scholar 

  14. Brown DR, Price LD (2008) Catecholamines and sympathomimetic drugs decrease early Salmonella Typhimurium uptake into porcine Peyer’s patches. FEMS Immunol Med Microbiol 52:29–35

    Article  CAS  PubMed  Google Scholar 

  15. Collins CB, Aherne CM, Kominsky D, McNamee EN et al (2011) Retinoic acid attenuates ileitis by restoring the balance between T-helper 17 and T regulatory cells. Gastroenterology 141:1821–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monteleone I, Rizzo A, Sarra M, Sica G et al (2011) Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141:237–248

    Article  CAS  PubMed  Google Scholar 

  17. Zelante T, Iannitti Rossana G, Cunha C, De Luca A et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Kominsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kao, D.J., Lanis, J.M., Alexeev, E., Kominsky, D.J. (2016). HPLC-Based Metabolomic Analysis of Normal and Inflamed Gut. In: Ivanov, A. (eds) Gastrointestinal Physiology and Diseases. Methods in Molecular Biology, vol 1422. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3603-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3603-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3601-4

  • Online ISBN: 978-1-4939-3603-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics