Skip to main content

Detection of Protein–Protein Interaction Within an RNA–Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1421))

Abstract

Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA–protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein–protein crosslinkings. This enabled us, for the first time, to “capture” Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein–protein contacts within an RNA–protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8(2):251–262

    Article  CAS  PubMed  Google Scholar 

  2. Bleichert F, Baserga SJ (2007) The long unwinding road of RNA helicases. Mol Cell 27(3):339–352

    Article  CAS  PubMed  Google Scholar 

  3. Chang TH, Tung L, Yeh FL, Chen JH, Chang SL (2013) Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. Biochim Biophys Acta 1829(8):764–774. doi:10.1016/j.bbagrm.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  4. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36(1):19–29. doi:10.1016/j.tibs.2010.07.008, S0968-0004(10)00141-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58(1):10–26

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Staley JP, Guthrie C (1999) An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol Cell 3(1):55–64

    Article  CAS  PubMed  Google Scholar 

  7. Zhang D, Rosbash M (1999) Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex. Genes Dev 13(5):581–592

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwer B (2001) A new twist on RNA helicases: DExH/D box proteins as RNPases. Nat Struct Biol 8(2):113–116

    Article  CAS  PubMed  Google Scholar 

  9. Will CL, Luhrmann R (2001) RNP remodeling with DExH/D boxes. Science 291(5510):1916–1917

    Article  CAS  PubMed  Google Scholar 

  10. Chen JY, Stands L, Staley JP, Jackups RR, Latus LJ, Chang T-H (2001) Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 7(1):227–232

    Article  CAS  PubMed  Google Scholar 

  11. Jankowsky E, Gross CH, Shuman S, Pyle AM (2001) Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291(5501):121–125

    Article  CAS  PubMed  Google Scholar 

  12. Hage R, Tung L, Du H, Stands L, Rosbash M, Chang TH (2009) A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction. Mol Cell Biol 29(14):3941–3952. doi:10.1128/MCB.00384-09, MCB.00384-09 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12(1):5–14

    Article  CAS  PubMed  Google Scholar 

  14. Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Luhrmann R (2009) The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 36(4):593–608. doi:10.1016/j.molcel.2009.09.040

    Article  CAS  PubMed  Google Scholar 

  15. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136(4):701–718. doi:10.1016/j.cell.2009.02.009, S0092-8674(09)00146-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92(3):315–326

    Article  CAS  PubMed  Google Scholar 

  17. Chen HT, Warfield L, Hahn S (2007) The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 14(8):696–703. doi:10.1038/nsmb1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohibullah N, Hahn S (2008) Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev 22(21):2994–3006. doi:10.1101/gad.1724408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301(5635):964–967

    Article  CAS  PubMed  Google Scholar 

  20. Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11(5):533–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Z, Licklider LJ, Gygi SP, Reed R (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419(6903):182–185

    Article  CAS  PubMed  Google Scholar 

  22. Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein drosophila vasa. Cell 125(2):287–300. doi:10.1016/j.cell.2006.01.054

    Article  CAS  PubMed  Google Scholar 

  23. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132

    Article  CAS  PubMed  Google Scholar 

  24. Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453

    Article  CAS  PubMed  Google Scholar 

  25. Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol 194:302–318

    Article  CAS  PubMed  Google Scholar 

  26. Lin R-J, Newman AJ, Cheng S-C, Abelson J (1985) Yeast mRNA splicing in vitro. J Biol Chem 260(27):14780–14792

    CAS  PubMed  Google Scholar 

  27. Stevens SW, Abelson J (2002) Yeast pre-mRNA splicing: methods, mechanisms, and machinery. Methods Enzymol 351:200–220

    Article  CAS  PubMed  Google Scholar 

  28. Umen JG, Guthrie C (1995) A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev 9:855–868

    Article  CAS  PubMed  Google Scholar 

  29. Tarn W-Y, Lee K-R, Cheng S-C (1993) Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc Natl Acad Sci U S A 90:10821–10825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jurica MS, Moore MJ (2002) Capturing splicing complexes to study structure and mechanism. Methods 28(3):336–345

    Article  CAS  PubMed  Google Scholar 

  31. Stevens SW, Abelson J (1999) Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc Natl Acad Sci U S A 96(13):7226–7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  33. Vijayraghavan U, Parker R, Tamm J, Iimura Y, Rossi J, Abelson J, Guthrie C (1986) Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J 5:1683–1695

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cellini A, Parker R, McMahon J, Guthrie C, Rossi J (1986) Activation of a cryptic TACTAAC box in the Saccharomyces cerevisiae actin intron. Mol Cell Biol 6:1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank C.-M. Lin and L.-C. Chang for assistances during the earlier phase of the project; R. Reed for providing pAdML-M3; J. Vilardell for pMS2-MBP; H.-T. Chen for pLH157 and BY4705 strain; S.-C. Cheng for anti-Prp8p and BJ2168 strain; and H.-T. Chen and S.-C. Cheng for insightful discussions. This project has been supported by grants from Ministry of Science and Technology (101-2311-B-001-005 and 102-2311-B-001-029), Thematic Projects (Academia Sinica; AS-99-TP-B20 and AS-103-TP-B12), and Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Hsien Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yeh, FL., Tung, L., Chang, TH. (2016). Detection of Protein–Protein Interaction Within an RNA–Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 1421. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3591-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3591-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3589-5

  • Online ISBN: 978-1-4939-3591-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics